
THE PHELIX CONTROL SYSTEM BASED ON UML DESIGN LEVEL
PROGRAMMING IN LABVIEW

H. Brand*, D. Beck, E. Gaul, W. Geithner, S. Götte, T.Kühl, K. Poppensieker, M. Roth, U.Thiemer,
GSI, DVEE, Planckstr. 1, D-64291 Darmstadt, Germany

Abstract

fs-frontend

Preamp
ns-frontend

Diagnostics

Amp1 Amp2 Amp3 Amp4 Amp5

Main
amplifer

Amp6 Amp7 Amp8 Amp9Amp10

Booster
amplifier

Diagnostics

SF6

HHT

ESR

Z6

cm
pr

es
so

r

XRLfs-frontend

Preamp
ns-frontend

Diagnostics

Amp1 Amp2 Amp3 Amp4 Amp5

Main
amplifer

Amp6 Amp7 Amp8 Amp9Amp10

Booster
amplifier

Diagnostics

SF6

HHT

ESR

Z6

cm
pr

es
so

r

XRL

Figure 1: Schematic view of the PHELIX setup. The
high voltage capacitor bank is located in the upper floor.
The beamlines to the experiments are only denoted.

The Unified Modeling Language (UML) [1] has
become the standard for documentation and high level
design of modern software. UML to code generators like
Rational Rose, Together, Rhapsody etc., allow to convert
the UML diagrams to text based languages like C++ or
Java and vice versa. Instead of converting the UML
graphs to another programming language prior to its use,
it is much better if the UML diagram itself is already
executable. This is made possible by the third party
toolkit ObjectVIEW [2] which can be used within the
graphical language LabVIEW [3]. As an example of this
approach the application layer of the control system of the
PHELIX, Petawatt High Energy Laser for heavy Ion
eXperiments [4], facility at GSI is presented.

INTRODUCTION
The combination of a high power laser and a heavy ion

beam is unique and opens new fields for research in
plasma physics, fusion, atomic spectroscopy etc. The
laser is set up in a two story building, 20 m x 23 m, with
class 10000 clean rooms for the laser. It will deliver the
beam to four experimental areas. The pumping energy for
the main amplifier is stored in a large capacitor bank at 20
kV. For safety reasons and convenience all devices must
be controlled remotely. Figure 1 shows a schematic view.

- ~10 oscilloscopes to measure the temporal beam profile
with fast diodes

- 10 power meter to measure the pulse energy.
Laser alignment
- ~100 axis for control of the laser beam alignment with

mirrors and lenses
In many cases, the graphical programming language

LabVIEW has become the default development
environment because of its fast learning curve and easy
access to typical hardware equipment. Therefore it has
been decided to develop the Control System (CS)
framework [5] which is tuned for performance especially
in the device layer. A dedicated control system can easily
be set up by adding experiment specific add-ons to the
framework. In case of PHELIX the application layer will
be implemented by using ObjectVIEW's implementation
of Object- and Petri-Nets with respect to UML 2.0, so the
code can be it's own documentation which is convenient
when considering the long term maintenance of that
facility.

- ~90 digital IO to control about 30 crosshairs which
define the optical axis

High Voltage System
- 12 high voltage power supplies, ignitrons and dump

circuits are controlled by
- ~100 digital outputs and ~10 DACs
 ~260 digital inputs and 50 slow ADCs and
 ~120 fast ADCs, 10 kHz, to measure the discharging

currents
Safety System
- ~150 digital IOs, ~50 safety relays and ~40 safety relay

combinations to provide safety
- CerPass [6] is used for access control
Timing system
- Gate and delay generators have to be configured for the

relative timing of all instruments in the sub nanosecond
regime.

REQUIREMENTS
PHELIX is built up from several subsystems as there

are femto- and nanosecond frontends, pre-, main- and
booster-amplifiers as well as some diagnostic stations.
There are a lot of different devices that have to be
controlled remotely:

- An external trigger determines the relative timing with
the ion beam from the accelerator

Although PHELIX has a static setup the installation

and commissioning phases require a highly flexible
control system, where operational states can be
configured on the fly. Once the commissioning has
finished the control system has to assist the operator for

Laser diagnostics
- ~30 digital cameras for the spatial and spectral beam

profile

Proceedings of ICALEPCS2003, Gyeongju, Korea

472

efficient operation. Therefore SCADA functionalities like
alarming, trending and user management are necessary.

The control system has to do more than just setting
some parameters and to acquire data. Sequences have to
be repeated periodically, with a rate exceeding 10Hz.
Moreover, the different steps in such a sequence need to
be synchronized with a precision of about 100ns, in case
of PHELIX even in the sub-nanosecond range. Alignment
procedures and the countdown for a laser shot are typical
sequences. Furthermore finite state machines with well
defined transitions have to be implemented and
maintained, e.g. for the safety and access control.

Important is the ability to call any function of any
device at any moment. Then, observables can be
measured as a function of any parameter of the
experiment. This feature allows investigating systematic
effects and debugging of an apparatus even for those
parameters which are not used in the preconfigured
operational modes.

The controlled devices are distributed and connected to
different PCs or via gateways to Ethernet. In some cases
safety requires that the users must not be close to the
experiment. This implies a distributed system with remote
access.

SOLUTION
Most hardware devices stem from third party

manufacturers and can be integrated via interfaces like
RS232, RS485, GPIB, Firewire, CAN-Bus to the device
layer provided by the CS framework which also
implements the network connectivity. SCADA
functionality like trending, alarming and user
management is provided by the Datalogging &
Supervisory Control (DSC) module of LabVIEW as well
as OPC connectivity to enable access to, e.g. hardware
connected via Profibus. The application layer can be
implemented by using the Object- and Petri-Net provided
by ObjectVIEW.

Hardware selection
We are using several models of Tektronix

oscilloscopes, Stanford Research, SRDG535 and Berkley
Nucleonics, BNC555, Gate and Delay Generators with
GPIB interface. Coherent power meters, Edwards Active
Gauge Controllers and Trinamics 6-axis motion
controllers are connected via RS232 and RS485. Basler
A302fs digital cameras are connected via Firewire to a PC
by using the DCAM standard. Beckhoff bus terminals
have been selected to integrate distributed slow control
digital and analog IO. They are connected via LWL
network and a Siemens Profibus master CP5613 FO. A
LabVIEW RT System with PXI 8156 and two PXI-6071
MIO cards is used to measure the discharge currents.

All PCs and most instruments with GPIB or serial line
interface are connected to a switched Ethernet (100
Mbit/LWL) by using GPIB-ENET, National Instruments,
and RS232/RS485-COM-Server, Wiesemann & Theis, as
gateways.

Object oriented approach, multi-threading and
events

Today, the CS framework is based on LabVIEW only.
ObjectVIEW is a third party toolkit which enables object
oriented programming with pure LabVIEW, based on
Virtual Instrument (VI)-templates and VI-Server
methods. LabVIEW intrinsic functionality
- multithreading, reentrancy, LV notifier, LV queues and
DataSocket - is used to implement active objects which
can react on events. ObjectVIEW is not required for the
CS framework.

Object- and Petri-Nets
These event mechanisms are also used to implement

ports with respect to UML 2.0. The connector pane of a
Launch-VI is used to specify the URLs for the ports. The
events are exchanged directly between the connected
objects. Special VIs are provided to read from and write
to a port. ObjectVIEW provides base classes for
elementary and hierarchical net objects (EON and HON)
as well as Petri-Net objects (PN). A Petri-Net consists of
places, edges and transitions. A place can have n markers.
A transition switches when the switch condition is true,
all connected places have the number of markers or space
available that are defined by the weight of the edges. This
means that it removes markers from input places and
creates new ones at the output places. Petri-Nets can exist
in three variants: Condition/Event-Net (C/E) is a
specialization of the Place/Transition-Net (P/T) described
before with one or zero marker. Predicate/Transition-Nets
(Pr/T) have colored markers.

THE PHELIX CONTROL SYSTEM
Each subsystem has it's own PC providing the device

layer of the CS framework and for local operation with
high performance for laser diagnostics, tuning and image
processing, as well as live display of the laser beam. In
principle all other equipment could be accessed via
Ethernet from all PCs. The PCs for remote operation are
located in the main control room.

The most important goal of the PHELIX control system
is the safety and access control as well as the high voltage
system. Therefore one PC will host the DSC engine and
the Profibus master to avoid unnecessary network traffic.
The subsystems will be modelled with Object- and Petri-
Nets as shown in figure 2 and 3 for the safety system.

The safety is implemented in hardware. The well
defined transitions of the Petri-Net help to enhance the
safety. It is also used to activate and deactivate alarms, to
assist the search procedure, and to execute the countdown
sequence. The Object-Net for the HV system ensures the
consistent operation of a collection of power supplies etc.

In the same way all subsystems of PHELIX will be
modelled with hierarchical object nets (HON). To include
user management and lock mechanisms in the application
layer elementary net objects (EON) will be used as
proxies to encapsulate the simple device layer objects.

Proceedings of ICALEPCS2003, Gyeongju, Korea

473

Figu
acce
Eve

Proceedings of ICALEPCS2003, Gyeongju, Korea
CONCLUSION

re 2: Hierarchical Petri-Net Object for the safety and
ss control containing four sub-Petri-Nets and the Port
nt handler.

The PHELIX control system will use about 500 active
objects which are distributed over about ten PCs with
some 10000 process variables.

The application of UML design methods within
LabVIEW is feasible and makes development as well as
maintenance much easier and comfortable. In particular
the UML system design is documentation, code and
executable!

REFERENCES
[1] http://www.omg.org
[2] R. Buhrke, LabVIEW Technical Resource, Vol.9, 3.
[3] R. Jamal, H. Pichlik: LabVIEW Applications and

Solutions, Prentice Hall, 1999.
[4] E.W. Gaul et al., GSI Scientific Report 2002 (2003)

101-103.
[5] http://labview.gsi.de/CS/cs.htm.
[6] http://www.cerberus.com/sec/d/sec_zut.asp

Figure 3: Hierarchical Petri-Net Object containing the Petri-Net for the specific state: HV-Operation
474

	THE PHELIX CONTROL SYSTEM BASED ON UML DESIGN LEVEL PROGRAMMING IN LABVIEW
	INTRODUCTION
	REQUIREMENTS
	SOLUTION
	Hardware selection
	Object oriented approach, multi-threading and events
	Object- and Petri-Nets

	THE PHELIX CONTROL SYSTEM
	CONCLUSION
	REFERENCES

