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Figure 1: Schematic view of the PHELIX setup. The
high voltage capacitor bank is located in the upper floor.
The beamlines to the experiments are only denoted. 

The Unified Modeling Language (UML) [1] has 
become the standard for documentation and high level 
design of modern software. UML to code generators like 
Rational Rose, Together, Rhapsody etc., allow to convert 
the UML diagrams to text based languages like C++ or 
Java and vice versa. Instead of converting the UML 
graphs to another programming language prior to its use, 
it is much better if the UML diagram itself is already 
executable. This is made possible by the third party 
toolkit ObjectVIEW [2] which can be used within the 
graphical language LabVIEW [3]. As an example of this 
approach the application layer of the control system of the 
PHELIX, Petawatt High Energy Laser for heavy Ion 
eXperiments [4], facility at GSI is presented. 

INTRODUCTION 
The combination of a high power laser and a heavy ion 

beam is unique and opens new fields for research in 
plasma physics, fusion, atomic spectroscopy etc. The 
laser is set up in a two story building, 20 m x 23 m, with 
class 10000 clean rooms for the laser. It will deliver the 
beam to four experimental areas. The pumping energy for 
the main amplifier is stored in a large capacitor bank at 20 
kV. For safety reasons and convenience all devices must 
be controlled remotely. Figure 1 shows a schematic view. 

- ~10 oscilloscopes to measure the temporal beam profile 
with fast diodes 

- 10 power meter to measure the pulse energy. 
Laser alignment 
- ~100 axis for control of the laser beam alignment with 

mirrors and lenses 
In many cases, the graphical programming language 

LabVIEW has become the default development 
environment because of its fast learning curve and easy 
access to typical hardware equipment. Therefore it has  
been decided to develop the Control System (CS) 
framework [5] which is tuned for performance especially 
in the device layer. A dedicated control system can easily 
be set up by adding experiment specific add-ons to the 
framework. In case of PHELIX the application layer will 
be implemented by using ObjectVIEW's implementation 
of Object- and Petri-Nets with respect to UML 2.0, so the 
code can be it's own documentation which is convenient 
when considering the long term maintenance of that 
facility. 

- ~90 digital IO to control about 30 crosshairs which 
define the optical axis 

High Voltage System 
- 12 high voltage power supplies, ignitrons and dump 

circuits are controlled by  
- ~100 digital outputs and ~10 DACs 
  ~260 digital inputs and 50 slow ADCs and 
  ~120 fast ADCs, 10 kHz, to measure the discharging 

currents 
Safety System 
- ~150 digital IOs, ~50 safety relays and ~40 safety relay 

combinations to provide safety 
- CerPass [6] is used for access control 
Timing system 
- Gate and delay generators have to be configured for the 

relative timing of all instruments in the sub nanosecond 
regime. 

REQUIREMENTS 
PHELIX is built up from several subsystems as there 

are femto- and nanosecond frontends, pre-, main- and 
booster-amplifiers as well as some diagnostic stations. 
There are a lot of different devices that have to be 
controlled remotely:  

- An external trigger determines the relative timing with 
the ion beam from the accelerator 

 
Although PHELIX has a static setup the installation 

and commissioning phases require a highly flexible 
control system, where operational states can be 
configured on the fly. Once the commissioning has 
finished the control system has to assist the operator for 

Laser diagnostics 
- ~30 digital cameras for the spatial and spectral beam 

profile 
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efficient operation. Therefore SCADA functionalities like 
alarming, trending and user management are necessary. 

The control system has to do more than just setting 
some parameters and to acquire data.  Sequences have to 
be repeated periodically, with a rate exceeding 10Hz.  
Moreover, the different steps in such a sequence need to 
be synchronized with a precision of about 100ns, in case 
of PHELIX even in the sub-nanosecond range. Alignment 
procedures and the countdown for a laser shot are typical 
sequences. Furthermore finite state machines with well 
defined transitions have to be implemented and 
maintained, e.g. for the safety and access control. 

Important is the ability to call any function of any 
device at any moment. Then, observables can be 
measured as a function of any parameter of the 
experiment. This feature allows investigating systematic 
effects and debugging of an apparatus even for those 
parameters which are not used in the preconfigured 
operational modes. 

The controlled devices are distributed and connected to 
different PCs or via gateways to Ethernet. In some cases 
safety requires that the users must not be close to the 
experiment. This implies a distributed system with remote 
access. 

SOLUTION 
Most hardware devices stem from third party 

manufacturers and can be integrated via interfaces like 
RS232, RS485, GPIB, Firewire, CAN-Bus to the device 
layer provided by the CS framework which also 
implements the network connectivity. SCADA 
functionality like trending, alarming and user 
management is provided by the Datalogging & 
Supervisory Control (DSC) module of LabVIEW as well 
as OPC connectivity to enable access to, e.g. hardware 
connected via Profibus. The application layer can be 
implemented by using the Object- and Petri-Net provided 
by ObjectVIEW. 

Hardware selection 
We are using several models of Tektronix 

oscilloscopes, Stanford Research, SRDG535 and Berkley 
Nucleonics, BNC555, Gate and Delay Generators with 
GPIB interface. Coherent power meters, Edwards Active 
Gauge Controllers and Trinamics 6-axis motion 
controllers are connected via RS232 and RS485. Basler 
A302fs digital cameras are connected via Firewire to a PC 
by using the DCAM standard. Beckhoff bus terminals 
have been selected to integrate distributed slow control 
digital and analog IO. They are connected via LWL 
network and a Siemens Profibus master CP5613 FO. A 
LabVIEW RT System with PXI 8156 and two PXI-6071 
MIO cards is used to measure the discharge currents.  

All PCs and most instruments with GPIB or serial line 
interface are connected to a switched Ethernet (100 
Mbit/LWL) by using GPIB-ENET, National Instruments, 
and RS232/RS485-COM-Server, Wiesemann & Theis, as 
gateways. 

Object oriented approach, multi-threading and 
events 

Today, the CS framework is based on LabVIEW only. 
ObjectVIEW is a third party toolkit which enables object 
oriented programming with pure LabVIEW, based on 
Virtual Instrument (VI)-templates and VI-Server 
methods. LabVIEW intrinsic functionality  
- multithreading, reentrancy, LV notifier, LV queues and 
DataSocket - is used to implement active objects which 
can react on events. ObjectVIEW is not required for the 
CS framework. 

Object- and Petri-Nets 
These event mechanisms are also used to implement 

ports with respect to UML 2.0. The connector pane of a 
Launch-VI is used to specify the URLs for the ports. The 
events are exchanged directly between the connected 
objects. Special VIs are provided to read from and write 
to a port. ObjectVIEW provides base classes for 
elementary and hierarchical net objects (EON and HON) 
as well as Petri-Net objects (PN). A Petri-Net consists of 
places, edges and transitions. A place can have n markers. 
A transition switches when the switch condition is true, 
all connected places have the number of markers or space 
available that are defined by the weight of the edges. This 
means that it removes markers from input places and 
creates new ones at the output places. Petri-Nets can exist 
in three variants: Condition/Event-Net (C/E) is a 
specialization of the Place/Transition-Net (P/T) described 
before with one or zero marker. Predicate/Transition-Nets 
(Pr/T) have colored markers. 

THE PHELIX CONTROL SYSTEM 
Each subsystem has it's own PC providing the device 

layer of the CS framework and for local operation with 
high performance for laser diagnostics, tuning and image 
processing, as well as live display of the laser beam. In 
principle all other equipment could be accessed via 
Ethernet from all PCs. The PCs for remote operation are 
located in the main control room. 

The most important goal of the PHELIX control system 
is the safety and access control as well as the high voltage 
system. Therefore one PC will host the DSC engine and 
the Profibus master to avoid unnecessary network traffic. 
The subsystems will be modelled with Object- and Petri-
Nets as shown in figure 2 and 3 for the safety system.  

The safety is implemented in hardware. The well 
defined transitions of the Petri-Net help to enhance the 
safety. It is also used to activate and deactivate alarms, to 
assist the search procedure, and to execute the countdown 
sequence. The Object-Net for the HV system ensures the 
consistent operation of a collection of power supplies etc. 

In the same way all subsystems of PHELIX will be 
modelled with hierarchical object nets (HON). To include 
user management and lock mechanisms in the application 
layer elementary net objects (EON) will be used as 
proxies to encapsulate the simple device layer objects. 
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CONCLUSION 

 
re 2: Hierarchical Petri-Net Object for the safety and
ss control containing four sub-Petri-Nets and the Port
nt handler. 

The PHELIX control system will use about 500 active
objects which are distributed over about ten PCs with
some 10000 process variables.  

The application of UML design methods within
LabVIEW is feasible and makes development as well as
maintenance much easier and comfortable. In particular
the UML system design is documentation, code and
executable! 
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Figure 3: Hierarchical Petri-Net Object containing the Petri-Net for the specific state: HV-Operation 
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