
EPICS DEVICE/DRIVER SUPPORT MODULES FOR NETWORK-BASED
INTELLIGENT CONTROLLERS

J. Odagiri, J. Chiba, K. Furukawa, N. Kamikubota, T. Katoh, H. Nakagawa
and N. Yamamoto, KEK, Tsukuba, Japan

M. Komiyama, I. Yokoyama, RIKEN, Wako, Japan
H. Song, IHEP, Beijing, China,

Y. Yamamoto, Mitsubishi Electric Co., Kobe, Japan
H. Miyaji, H. Satoh and M. Sugimoto, MCR, Kobe, Japan

Abstract
Modern accelerator control systems adopt a wide

variety of intelligent controllers to interface front-end
computers with active components of the accelerator.
Recently, some of the intelligent controllers come
equipped with an Ethernet interface, giving an
opportunity to use a network as a kind of field busses.

However, developing device drivers for the use of such
controllers is a complex and time-consuming process in
most cases. It is essential to have the drivers share as
much of their codes as possible while leaving flexibility
to adapt to various proprietary communication protocols.

We developed a set of device/driver support modules
for the Experimental Physics and Industrial Control
System (EPICS) to support several network-based
intelligent controllers, such as Program-able Logic
Controllers (PLCs) and Device Interface Modules (DIMs).

The software consists of a common driver module, a
common device support module, and a device-specific
module for each of the devices to be supported. The
common driver module encapsulates the details of the
programming for communication over the network. The
common device support module encapsulates the details
of the framework of EPICS for asynchronous I/O
transactions.

We decided to implement the common modules in such
a manner that the device specific modules can be
implemented by using only standard UNIX libraries. As a
result, it turned out that the developed device-specific
modules were compliant with both EPICS 3.13 on
VxWorks and 3.14 on Linux.

INTRODUCTION
It is becoming more common for intelligent device

controllers, such as PLCs and DIMs, to have an Ethernet
interface. The accelerator control systems of J-PARC at
JAERI/KEK [1] and RARF/RIBF at RIKEN [2, 3] will
use devices of this kind with EPICS intensively for
stability of the TCP/UDP standard protocol widely used
in commercial fields and flexibility in a configuration of
the devices. A smaller control system of the prototype
FFAG accelerator at KEK will also adopt the same
scheme [4].

Table 1 summarizes the PLCs and DIMs to be used in
the control systems.

Table 1: Devices Supported
Device Type Make Protocol
FA-M3 PLC Yokogawa TCP/UDP
MELSEC-Q PLC Mitsubishi TCP/UDP
CVM1/CS1 PLC Omron TCP/UDP
EMB-LAN100 DIM Custom UDP
N-DIM DIM Custom TCP/UDP
BPMC DIM Custom TCP

All of the devices have one or more communication

server, to which an Input Output Controller (IOC) can
send a command and obtain a response to read/write the
internal memory of the devices. In addition to the
command/response-based transaction, some of the
devices can send spontaneous messages in order to notify
the IOC of an event, or to report the results of
measurements that had been requested by the IOC in
advance. EPICS device/driver support modules must meet
the requirements.

DESIGN OF THE MODULES
This section describes the design and technical details

of the device/driver support modules. We focus on the
usual command/response-based transaction hereafter
through subsection 2.6. The last subsection, 2.7, discusses
the support of the device-driven transactions.

Basic Design
The key observation in designing the device/driver

support modules is that what to send/receive depends on
each of the devices, whereas how to send/receive, as far
as the six devices listed in table 1 concerns, does not. The
part of the code that handles the latter can be factored out
to be common facilities shared by all of the device-
specific modules. The architecture of the software is
illustrated as the middle block in Fig. 1.

On the other hand, communication protocols at the
application layer on the socket interface do not have any
standard. It is hard to foresee all of possible future
protocols to be supported in this framework. As a result, it
is hard to create a common driver module that is generic
enough for device-specific modules to have just a simple
command/response table.

Proceedings of ICALEPCS2003, Gyeongju, Korea

494

Record Support Asynchronous I/O Library Module

The Asynchronous I/O Library module supplies the
upper device-specific layer with a set of Application
Program Interfaces (APIs) that encapsulates technical
details of an asynchronous device support of EPICS. Two
main functions, a generic initialisation function and a
generic read/write function are provided, which can be
wrapped to be member functions of a DSET of a specific
record/device type.

FA-M3 MELSEC-Q N-DIM

Common Driver Support

Asynchronous I/O Library

TCP/UDP Socket Interface

The initialisation function invokes Link Field Parser to
identify a remote device and the address to read/write. If a
Message Passing Facility (MPF), which is described in
the next subsection, has not yet been created for the
remote device, it creates one. The pointers to the three
functions mentioned in the previous subsection are passed
to the MPF so that they are invoked at appropriate steps
of an asynchronous I/O. It also initialises a structure
required to call back the record upon its completion stage.

Figure 1: Architecture of software.

We decided to implement the most basic common

driver, which handles just sending a command and getting
a response, with a method to allow us to implement
beyond the basics at a higher layer in the device-specific
modules. This design strategy made it possible to keep the
code of the common driver simple enough while leaving
much flexibility to adapt to various proprietary protocols.

A read/write function is to be invoked twice in an
asynchronous I/O, at the initiation and completion stages.
At the initialisation stage, it invokes Command
Constructor to form a message, and puts the I/O request
on a queue in an MPF. It then notifies the MPF of the
event. At the completion stage, the read/write function has
nothing to do, since Response Parser transfers the data
before the function is invoked.

Another design goal was to provide appropriate
interfaces with the device-specific modules so that they
can be implemented by using only standard UNIX
libraries. This should be possible in most cases, since
constructing and parsing messages are just a simple
operation on a series of bytes of data, regardless of being
either ASCI codes or binary ones.

Common Driver Support Module
Device-Specific Modules

The Common Driver Support module creates an MPF,
for each communication server running on a remote
device. All of the I/O requests heading over to the same
remote server are to be lined in a single request queue of
the MPF waiting for its turn. An MPF comprises the
following threads of processing:

The essential part of device-specific modules is about
constructing commands to be sent to a remote device, and
parsing the response messages, in addition to getting
address information by parsing the link field of the
database records. Every device-specific module must
implement the following three functions:

 • Send Task gets an I/O request from the queue and
invokes Command Constructor to put the message
bytes into an intermediate buffer and to send it to
the remote device, then blocks until Receive Task
gets a response message.

• Link Field Parser parses the link field of the run-
time database records to get address information of
a specified channel upon initialisation of the IOC
program.

• Command Constructor constructs a command to
be sent to a remote device in reference to a
specified address, and transfer data into the
command message from the record buffer if the
operation is writing.

• Receive Task waits for the response message to
arrive and invokes Response Parser to parse the
message, and then makes Send Task being blocked
go to the next round. It finally issues a call-back
request to complete the asynchronous I/O.

• Response Parser parses the contents of the
response message upon its arrival, and transfers
data included in the message to the record buffer if
the operation is reading.

• Timeout Handler cancels an I/O transaction when
a watchdog timer has expired with a specified
timeout. When this occurs, Timeout Handler issues
a call-back on behalf of Receive Task with an
ERROR.

Since device-specific modules interface with record
support modules, they include the member functions of
Device Support Entry Tables (DSETs). They can be
implemented just by wrapping functions supplied by the
Asynchronous I/O Library, as explained in the next
subsection.

The possible race between Receive Task and Timeout

Handler can be managed by using the difference in
priority of the execution. Measures to avoid any
misplacement of response messages to an irrelevant
record have also been carefully implemented.

Proceedings of ICALEPCS2003, Gyeongju, Korea

495

Chain Transaction
Response Parser, a function in device-specific modules,

can return NOT_DONE as a return value to have Send
Task in an MPF invoke Command Constructor once again.
If NOT_DONE is returned, Receive Task does not issue a
call-back request to complete the I/O. Instead, the task
puts another I/O request on the request queue so that next
transaction continues.

An IOC communicating with a WE7000 [5], although it
is not supported in this framework at this moment,
expects instantaneous ACK to be returned just after a
command to the WE7000 has been sent. In addition, an
OK must be sent back to the WE7000 in response to the
ACK. Handshake sequences of this kind can be
implemented as a state machine in Command Constructor
and Response Parser in the device-specific modules, a
state machine that generates a series of chain transaction.

Another application of the chain transaction, which is
actually in use, is extending the maximum number of data
transferred to/from a device. Most PLCs can transfer up
to only some hundreds of words by a single transaction.
The device-specific modules of PLCs use a chain of
transactions to transfer huge data over the limit by
splitting it into multiple pieces, and then transfer them
one-by-one.

The chain transaction works for more application-sided
sequences of a procedure as well. The “Indirect Write
Rule” adopted by the J-PARC control system illustrates
how it works. The rule, for security reasons, forces
application programs to write a value of data together
with its destination address into one of the
“communication ports” defined in a memory area of the
PLC, instead of writing the data directly at destination
address. A ladder program running on the PLC checks the
data written in the port and transfers it to the destination
address only if the value is acceptable. The rule requires,
for one write operation, the following three steps of
transactions: 1) Test a busy flag of the port, 2) Write data
and its address into the port, and 3) Set the busy flag of
the port. The procedure was implemented in the device-
specific module as a form of simple state machine to
cause the chain of transactions.

Device Driven Transaction
Four devices (FA-M3, EMB-LAN100 [5], N-DIM [2]

and BPMC) listed in table 1 have a function of sending
event notification messages, or messages that report
results of an on-going measurement. The messages may
or may not require a response to a remote device. While
an IOC should have issued the request of the notification
or report in advance, it is the remote device that decides
when the messages are dispatched.

To handle this type of device-driven transactions,
Command Constructor and Response Parser in the
device-specific modules are replaced with Response
Constructor, and Event Parser respectively. The MPF for
device-driven transactions creates a simple server task to

get the messages and send back a response message, if
any, to the remote device.

PORTING TO R3.14 ON LINUX
While the first version of the device/driver support are

developed on R3.13 of EPICS on VxWorks, a recent trend
toward Linux and multi-platform compliance of the latest
version of R3.14, encouraged us to port the device/driver
modules onto it. Using Linux as a platform has the
following advantages:

• Cost-effective: A single PC can be used for both

the target and the development environment,
making the initial and running cost much lower.

• Physically Portable: The statement above applies
to a laptop PC to be used for a test on premises of
a site where a controlled device is being developed.

• Quick start-up: Getting an IOC program started
takes much less time than it takes when the
program is booted through a network over to a
remote target, making the debugging cycle much
faster.

Porting of the common driver was straightforward. We

only had to map APIs of VxWorks onto corresponding
ones defined in the Operating System Independent (OSI) -
libraries of EPICS. As for the device-specific modules,
the work was next to nothing.

CONCLUSION
A set of EPICS device/driver support modules of

intelligent device controllers was developed as a family in
the same framework for communication through Ethernet
connections. The adoption of a modular and consolidated
design allowed us to implement device-specific modules
compliant with both versions of EPICS R3.13 and R3.14
for devices of six deferent types, while supporting a wide
variety of features of the devices.

REFERENCES
[1] K. Furukawa et. al., “Implementation of EPICS

Device Support for Network-Based Controllers,
ICALEPCS 2001, San Jose, Nov. 27-30, 2001.

[2] M. Komiyama, et. al., “Current Status of the Control
System for the RIKEN Accelerator Research Facility”,
This conference.

[3] T. Tanabe et. al., “Current Status of the Control
System Development at RIKEN RI-Beam Factory”,
This conference.

[4] Y. Yuasa, to be published in Proc. of the 14th
Symposium of Accelerator Science and Technology,
Tsukuba, Nov. 11-13, 2003 (in Japanese).

[5] K. Furukawa et. al., “A Network-based Intelligent
Controller for J-Parc”, This conference.

Proceedings of ICALEPCS2003, Gyeongju, Korea

496

	EPICS DEVICE/DRIVER SUPPORT MODULES FOR NETWORK-BASED INTELLIGENT CONTROLLERS
	INTRODUCTION
	DESIGN OF THE MODULES
	Basic Design
	Device-Specific Modules
	Asynchronous I/O Library Module
	Common Driver Support Module
	Chain Transaction
	Device Driven Transaction

	PORTING TO R3.14 ON LINUX
	CONCLUSION
	REFERENCES

