
INTERFACING CANBUS TO EPICS AT THE SWISS LIGHT SOURCE

M.Dach†, T.Korhonen, T.Pal, PSI, CH-5232 Villigen, Switzerland

Abstract
The SLS accelerator control system is based on EPICS

and uses VME crates as control units. In order to monitor
the VME crates the CANbus system has been introduced.
The challenge was to interface CANbus into EPICS using
PC, running Real-Time Linux, and the CAN Open
protocol. This paper describes the hardware and software
structure of CANbus system in the context of the Real-
Time requirements. Several approaches to optimize the
deterministic behavior of such a system in LINUX-RT
(RTAI - Real Time Application Interface) and EPICS
environment are discussed.

MISSION STATEMENT
The aim of the work behind this paper was to design

and implement a Supervisory Control and Diagnostic
System (SCDS) to monitor VME crates of the control
system of the Swiss Light Source (SLS) at the Paul
Scherrer Institute. For the operation of the SLS facility a
distributed control system based on EPICS [1]
(Experimental Physics and Industrial Control System)
infrastructure is used. This system uses VME as
operational nodes, and PC/Linux as client platforms. The
local Ethernet network links all components of the
system. During the commissioning phase of the
accelerators, a problem emerged related to VME failures.
This refers rather to the software implementation than to
the hardware. The SLS control system includes
approximately 166 VME crates distributed around the
accelerator rings. The hang up status of certain
operational VME nodes requires immediate operator
intervention. In most cases rebooting the faulty node was
necessary. A desirable solution to fulfill this requirement
would be the installation of SCDS to monitor and control
the VME nodes.

REQUIREMENTS FOR SCDS AT THE SLS
The Supervisory Control and Diagnostic System is a

distributed control system and as such should be
characterized by following features:

• Reliability – of an item (system) is defined as the
probability that it will perform a specified function
under specified operational and environmental
conditions, at and during the duration of a specified
time [2]. The reliability aspect is especially
important for SCDS, since it is a supervisory system.

• Determinism – is the ability of the system to react to
external events in the defined time horizon. This
feature refers to the Real Time systems. Three types
of RT systems [3] are considered: Hard RT, Soft RT
and Firm RT. The reaction for an event for the Hard
RT systems must be done during a specified interval

of time, which cannot be exceeded. In our case this
type of the system would be the most desirable.

Each VME crate in the SLS is equipped with control-
diagnostic interface with 5 digital output signals (mainly
the status of VME power supply voltages) and 2 control
digital signals (for reboot purpose). The SCDC system
should be able to monitor and control above-mentioned
signals and in addition to measure the temperature.
Hardware wise, it should be independent from the
existing VME based control system. From the software
point of view the SCDS should be integrated within the
EPICS infrastructure to ease future maintenance.

CANBUS DESCRIPTION
Presently there exist numerous hardware solutions

fulfilling the requirements given for SCDS system in
SLS. As the simplest and also inexpensive choice, a
system based on field-bus was considered. There are,
however, many field-bus solutions available. One of the
most popular (in Europe) and very reliable is CANbus.
The CANbus (Controller Area Network) is a serial
communication bus linking intelligent CAN controllers
for Real-Time control applications. The CANbus standard
(ISO 11898)[4] defines two lowest layers of ISO/OSI
reference model: the Physical Layer and the Data Link
Layer. The MAC (Medium Access Control) sub-layer (of
the Data Link Layer) is the most important from message
scheduling and time analysis point of view. CANbus uses
deterministic mechanism for bus access called CSMA/BC
(Carrier Sense Multiple Access/Bitwise Connection).

The above prevents message collisions and ensures
messages arbitration. The arbitration is done with respect
to the identifier field of every CAN message. CAN 2.0 A
standard uses an 11-bit identifier. From the application
point of view CAN does not define the meaning of data
carried by CAN messages. There are also some other
missing elements like bus management and error handling
which is needed to interface CANbus to any application.
To compensate these drawbacks, one of the existing
approaches i.e. CANopen CiA-301 standard (CAN in
Automation) was adopted. CANopen defines an
Application Layer with all of the mechanisms and
elements required by modern applications. In CANopen
protocol the 11 bit long identifier is divided into two
parts: one containing 4 bits for function code definition
and the second one – 7 bits for CAN node identification.
This mechanism clearly characterizes the meaning of data
carried by CAN messages. CANopen, having object
oriented flavor for data transmission, uses two type of
objects: SDO (Service Data Objects) and PDO (Process
Data Objects). For the Real Time transmissions the PDOs
are recommended since one PDO object is mapped into
one CAN data frame (CAN message).

†dach@psi.ch

Proceedings of ICALEPCS2003, Gyeongju, Korea

506

TRANSMISSION REQUIREMENTS FOR
CANOPEN

cfi – time required for the message fi transmission.
bti– blockage time for higher priority message by

 lower priority message.
For messages transmission CANopen uses SDO and

PDO objects and offers the following communication
models [4]:

tzi – complete time for the message fi transmission.
 x - is the minimal integer value greater than or equal

to x. • Model client-server (for SDO objects)
According to equation (1), time t has to be found such

that all messages of higher priority than the message fi
will be transmitted. This could be done during the
iteration process.

• Model producer-consumer (for PDO objects)
o Synchronous transmission
 Event driven (using SYNC objects)

(model “pull”) Taking into account communication models and
message scheduling algorithms the following types of
data acquisition servers for CANopen could be
considered:

 Timer driven (model “push”)
o Asynchronous transmission
 Remotely requested (model “pull”)
 Event driven (transmission triggered by the

change of certain parameters)(model “push”) • Polling server: periodically sends requests to every
CANopen node and waits for their responses. This is
a deterministic way for data acquisition. It, however,
requires higher bandwidth of the transmission media.

CAN, from the access to the bus point of view, can be
treated as a centralized system. For such systems, the
following message scheduling methods could a priori be
considered: • Waiting server: waits for non-periodic messages to be

transmitted by CANopen nodes upon the change of
measured values, like temperature. Data acquisition
is much faster compared to the polling server, but a
blockage of lower priority messages, by too frequent
occurrence of higher priority messages, can happen.

With static priority allocation:
• FIFO – cannot be used for CAN, due to the bit

dominance mechanism used for the bus access that
clearly appoints the order of messages to be
transmitted.

• Mixed server: encompasses advantages of both
polling and waiting servers.

• GRMS (Generalized Rate Monotonic Scheduling).
In order to use this method each node of the
CANbus has to be configured according to the
GRMS paradigm [3], which says that the message
priority is inversely proportional to the frequency
of message occurrences in the system.

Simulations and tests of the three types of servers
showed that the polling server is best suited for the SDCS
system. It is fully deterministic, which cannot be said for
the waiting server. From the complexity point of view, it
is simpler in operation compared to the mixed server, and
therefore there is lower probability of its malfunctioning.
The functional behavior of the polling server for SDCS
system is presented in the UML sequence diagram (see
Fig. 1).

With dynamic priority allocation:
• This type of scheduling is not recommended for

CAN since several messages with the same
identifier may occur in the system, which leads to
the arbitration problem.

With mixed priority allocation: :CANacqThread

.setOperational()

:CANcardBuffer :CANbus

send Oper Msg

.sendSYNC()
send SYNC Msg

get PDO Msg

get PDO Msg

get PDO Msg

msg2

msg1

msg128.readBuffer()

.processBuffer()

.repeatLoop
every 350 ms

0

3.6

1

ms

6.2

333.8
334

350

CAN runs at
50KBit/sec

• It is not recommended. This method requires
several bits for user priority identification. In
CANopen there are 7 bits remaining for node
identification that could be used for user priority
allocation. Consequently it leads to a large
reduction of nodes in the system. Comparison test
showed that the GRMS method gives very similar
performance as this one.

The above investigations show that the most suitable
method for messages scheduling for CANopen is GRMS.
The mathematical representation [3], equation (1), for it is
as follows:

iiii

i

j j
j

i
i

dfbtcftiwtz

t
tf
tcf

tf
tcf

tf
tcf

tf
tcftiw

≤++−=

=

=

++

+

=− ∑

−

=−
−

),1(

...),1(
1

11
1

2
2

1
1

Figure 1: Polling server – sequence diagram

The data acquisition for all CANopen nodes takes one
where:

fi – denotes the message from the serie
 f2,......,ff}
tfi– period occurrence of periodic messages

minimal time between non-periodic mess
dfi – time limitation for the message fi

Proceedings of ICALEPCS2003, Gyeongju, Korea
(1)

cycle of 350ms. This period of time is fixed and fully
deterministic. For data acquisition, an event driven
mechanism based on SYNC message transmission is
used. CANopen nodes are configured in such a way that
all of them respond to it. To calculate the total data
acquisition time, equation (1) was used. It could,

s F={ f1,

 fi, or the
ages.

507

however, be simplified because the period of message
occurrence for every CANopen node is identical. The
total acquisition period is the sum over all nodes
multiplied by the time required for every message to be
transmitted.

STRUCTURE OF THE SCDC AT THE SLS
The SCDS is based on CANbus with CANopen

protocol. For the integration within the EPICS
infrastructure, the CAN-EPICS gateway server is used. It
is conceptually divided into two parts: EPICS and CAN.
The CAN part for data acquisition, from CANbus, uses
the pooling server mechanism. The CAN-EPICS gateway
server operates on the PC/LINUX gateway, which links
CANbus with the SLS local network. The hardware
structure of the SCDS system is shown in figure 2.

VME VME VME

SLS network

Bridge

CANbus

Ethernet card

CAN master card

CAN AI/BIO
module

CAN AI/BIO
module

CAN AI/BIO
module

PC computer

Figure 2: System layout

The software structure of the CAN-EPICS gateway

server is shown in figure 3.

Config file
CAN

objects
CA

channels

CAN-EPICS
server CAN client

app

CAN master
card

CANbus Ethernet

Acq loop CA

CA

CAN drv.

Ethernet
card

Ethernet
card

Eth. drv. Eth. drv.

PC Gateway PC Client

Figure 3: The CAN-EPICS gateway server

The weak point of the SCDS system from the Real
Time requirements point of view is the CAN-EPICS
gateway server running on Linux. In order to improve the
deterministic behavior of the system, the RTAI (Real
Time Application Interface) extension for Linux was
incorporated. This idea explores the usage of the Linux
RTHAL (Real Time Hardware Abstraction Layer)[5]. The
RTAI package, by means of this layer, takes over the PC

interrupt handling. In order to use the Real time capability
of RTAI extension, the CAN-EPICS gateway server was
modified, and the CAN acquisition part was implemented
as the real-time loadable module into the kernel
workspace. The modified structure of the CAN-EPICS
gateway server is shown in figure 4.

Linux Kernel

drivers

sys. calls

Hardware

Init Bash
Application
work space

Kernal
work space

RT-linux module
scheduler

RT-task
Acq. loop

CAN-EPICS
server

RT FIFO

RT CAN
driver

CAN master
card

Figure 4: The CAN-EPICS gateway in Linux-RTAI
environment

The CAN to EPICS conversion part of the server
remains unchanged since it is not critical from the timing
viewpoint.

RESULTS AND OUTLOOK
The SCDS system was implemented and tested. It is

working reliably, in a deterministic way. During the phase
of server implementation the performance of Linux-RTAI
was not known. To test the deterministic behavior of the
Linux-RTAI, a PC parallel port was taken. The
experiment was done on a PC Pentium II 250 MHz.
(Linux kernel 2.4.17 with the RTAI package 24.17.2).
The test was to run the RT periodic thread within Linux-
RTAI kernel space to set/unset the bit of the parallel port.
The waveform observed on the oscilloscope (LeCroy LC
534AM) was symmetrical. Reducing the control RT
thread repetition period, it was observed that the shortest
one was 20 µsec, when the waveform was still
symmetrical. This observation largely exceeds the
requirements for the CAN acquisition server. As a
complementary feature of the Linux-RTAI test, the
EPICS driver to control the Parallel port in Linux-RTAI
environment was implemented.

REFERENCES
[1] EPICS:

http://csg.lbl.gov/EPICS/RecomendedDocs.html
[2] P.Kales, “Reliability” ISBN 0-13-485822-0 1998
[3] J.Werewka, T. Szmuc “Analysis and design of real-

time computer systems with different distribution
grade” ISBN 83-86856-33-5 2001

[4] CAN in Automation http://www.can-cia.de/cg.htm
[5] Real Time Application Interface:

http://www.aero.polimi.it/projects/rtai

Proceedings of ICALEPCS2003, Gyeongju, Korea

508

	INTERFACING CANBUS TO EPICS AT THE SWISS LIGHT SOURCE
	MISSION STATEMENT
	REQUIREMENTS FOR SCDS AT THE SLS
	CANBUS DESCRIPTION
	TRANSMISSION REQUIREMENTS FOR CANOPEN
	STRUCTURE OF THE SCDC AT THE SLS
	RESULTS AND OUTLOOK
	REFERENCES

