
A SOFTWARE FRAMEWORK TO CONTROL A NETWORK-CONNECTED
EQUIPMENT AS A PSEUDO DEVICE

M. Ishii, T. Fukui, T. Masuda, T. Ohata
SPring-8, Hyogo 679-5198, Japan

Abstract
Recently network-connected measurement instruments

and controllers have increased. Today, Ethernet could be
understood as a kind of a field bus for the front-end
subsystems. The network-connected equipment uses the
socket communication as a common software interface.
The socket interface requires different handling from bus
attached device access, that is, control application
programmers have to understand the socket
communication protocol in detail. It is inconvenient for
them to develop the software efficiently. We developed a
software framework, Device Masquerade, which handles
a network-connected device as a pseudo device. The
socket interface can be controlled through common
equipment access libraries like bus-attached devices. The
Device Masquerade consists of three parts; 1) API
functions to access pseudo device, 2) a communication
client software to access the server running on the remote
equipment, 3) a pseudo device driver to interconnect
between application programs linking the API library and
the communication client. The pseudo device driver
implements the exclusive access control. It is possible to
replace the socket with other protocol. We applied the
Device Masquerade for the installation of motor control
units in the linac control system.

INTRODUCTION
The measurement instruments and controllers with

network interface have increased in the field of
accelerator and radiation research. Ethernet is recognized
as a field bus for the front-end subsystem that provides
high-speed communication. IP protocol is popular and
implemented as an external communication interface of
various control systems.

We needed a new software framework in order to
introduce the network-connected equipment in the
SPring-8 standard software framework [1], MADOCA,
(Message And Database Oriented Control Architecture).
The software framework handles network communication
in the same manner as bus-attached devices. Equipment
experts develop application. Understanding the details of
the network protocols is inconvenient.

In the MADOCA framework, software processes
control the same devices at the same time. So we need
exclusive access control to the device. It seems that many
measurement instruments and controllers with network
connectivity are designed to be controlled via a single
software process. It is important to implement exclusive
access control in the MADOCA framework.

We developed a new software framework, named
Device Masquerade, to control network-connected
devices as pseudo devices. The Device Masquerade uses
UNIX device files, so that it can be adapted not only to
the MADOCA but also to other control frameworks.

This paper reports the design and performance of the
new software framework, and explains about an
application to the motor control units (MCU) in the linac
control system [2].

DESIGN
In order to control the network-connected equipment in

the MADOCA framework, our requirements were as
follows.

• It can control network-connected equipment in the
same handling as bus-attached devices.

• It implements the exclusive access control.
• It is a general-purpose software framework.

To meet these requirements, we designed the Device

Masquerade as follows.
• Introduce a client process named Communication

client (ComC) to be responsible for communication
with a network-connected device. Encapsulates the
differences of the network- connected devices in the
ComC.

• Introduce Universal Pseudo Device (UPD) to hide
the network-connected device from the application
programs.

• Implement exclusive access control with lock/unlock
mechanism in the UPD.

• Communicate between application programs and the
ComC with the UPD by passing the control
messages.

Figure 1 shows the schema of the Device Masquerade.

Universal Pseudo Device
(UPD)

Application
program

Comunication Client
(ComC)

/dev/upd00 /dev/comc00
network-connected

 equipment
ex) motor controller,

encoder, etc.
(socket server)

IP protocol handling

API

kernel space

user space

Figure 1: Schema of the Device Masquerade

Proceedings of ICALEPCS2003, Gyeongju, Korea

512

IMPLEMENTATION
The UPD provides two kinds of device files. One,

/dev/upd00 in Figure 1, is for the application programs.
Another, /dev/comc00 in Figure 1, is for the ComC.
These device files and a ComC is one set to control a
network-connected device.

The ComC supports IP protocols such as TCP socket,
UDP socket and FTP service. The ComC is possible to
replace the IP protocol with other protocol. The ComC
obtains the information such as server host name, port and
a kind of protocol from start-up argument and
configuration file with ASCII format, therefore, the set -
up of the ComC is very easy.

The sequence of the Device Masquerade is as follow.

1) The ComC accesses to the UPD, and sleeps until

receiving a message.
2) Application program sets a lock flag for exclusive

access.
3) Application program sends a message to the UPD.
4) The UPD passes the message to the ComC, and the

ComC wakes up.
5) The ComC communicates with a network-connected

device.
6) The ComC accesses to the UPD with return message,

and sleeps.
7) The UPD passes the message to application program.
8) Application program gets the return message.
9) Application program releases a lock flag.

PERFORMANCE

Test Environments
We measured the performance of the Device

Masquerade in Red Hat7.2, Solaris8 and HP-RT on single
CPU. Table 1 shows the specification of the platform on
the performance measurements.

Table 1. Specification of the platform on the performance

measurements for the Device Masquerade

Maker Hewlett-
Packard

Densan[3] Dell

Product 743rt DVE
686/50

Optiplex
GX240

CPU PA7100LC Pentium 3 Pentium 4

Clock 64MHz 800MHz 1.8GHz

OS HP-RT A.2.21 Solaris8 Linux
(Red Hat 7.2)

We set up the TCP socket server software on Solaris2.6

to emulate a network-connected equipment. We made the
test program including API on each platform. That

sequence of test program is 1) get a lock, 2) send message,
3) receive message, 4) release a lock. The message length
is 30bytes. The response time is the time taking from 1) to
4). We used gettimeofday() standard system call for time
measurement. Under multiple processes environment, we
repeated this sequence 10000 times, measured average
and maximum response time. And we repeated the
measurement 10 times.

Response Time
Figure 2 a) shows the average response time. The total

time to send and receive is constant regardless of number
of processes. It is 0.7msec in Red Hat7.2 and Solaris8 and
4msec in HP-RT. The response time mostly depends on to
get a lock and to release a lock. Figure 2 b) shows the
maximum response time. HP-RT clearly shows the
characteristic of real-time operating system (OS) and
good performance. The OS scheduler of Linux and
Solaris doesn’t re-schedule process in wait queue.

0
5

10
15
20
25

1 2 3 4 5

Number of processes

HP-RT
Solaris8
Red Hat7.2

Ti
m

e
[m

se
c]

a) Average response time

0
2
4
6
8

10
12

1 2 3 4 5
Number of processes

HP-RT
Solaris8
Red Hat7.2

b) Maximum response time

Figure 2: Response time

The average response time is enough performance for
our control system, but the maximum response time has
problem under multi processes environment. The
response time takes an order of seconds, it affects on
control system. To solve this problem, we forced to
release CPU by sleeping for one tick interval after release
a lock. Figure 3 a) shows the average response time with
one tick interval in API. The average response time is
constant regardless of increasing processes. Figure 3 b)
shows the maximum response time with one tick interval
in API. The maximum response time is improved
remarkably.

Proceedings of ICALEPCS2003, Gyeongju, Korea

513

0
5

10
15
20
25

1 2 3 4 5 6
Number of processes

Solaris8
Red Hat7.2

a) Average response time

0
50

100
150
200
250
300

1 2 3 4 5 6
Number of processes

Solaris8
Red Hat7.2

b) Maximum response time

Figure 3: Response time with one tick interval in API:
one tick is 10msec.

APPLICATIONS
In the summer of 2003, we applied the Device

Masquerade to control the MCUs for linac control system.
Figure 4 shows the schematic view of the MCU control
using the Device Masquerade.

MCU

MCU

MCU

poller

poller

poller
UPD

EM

8 MCUs5 pollers

ComC

ComC

ComC

/dev/upd00

/dev/upd01

/dev/upd02

/dev/comc00

/dev/comc01

/dev/comc02

8 ComCs

Solaris7 on VME

TCP
socket

EM : device control software
poller : data polling software
MCU : intelligent Motor Controller Unit

Figure 4: Schematic view of the MCU control using the
Device Masquerade for linac system

In linac control system, the data polling cycle is 5sec.
Three applications, an EM (equipment manager, device
control software) and two pollers (data polling software),
access a MCU at the same time. A VME CPU controls
eight MCUs. Equipment experts developed application
programs without a network programming.

SUMMARY
We developed the software framework, the Device

Masquerade, to control a network-connected device as a
pseudo device. We applied the Device Masquerade to
control the MCUs for linac control system. The Device
Masquerade hides the network-connected devices from
the application programs. The Device Masquerade
implements exclusive access control for multiple accesses
environment. The Device Masquerade is possible to adapt
not only to the MADOCA but also to other control
frameworks. Our measurements showed poor
performance under the non real-time OS. To solve this
problem, we forced to release CPU in API. The
performance is improved remarkably.

REFERENCES
[1] R. Tanaka et al., “Control System of the Spring-8

Storage Ring”, ICALEPCS’95, Chicago, USA, (1995)
p.201.

[2] T. Masuda et al., “Upgrade of Spring-8 Linac Control
by Re-engineering the VME systems for Maximizing
Availability”, ICALEPCS’03, Gyeongju, Korea,
(2003) in these proceedings.

[3] Densan Inc.: www.densan.co.jp

Proceedings of ICALEPCS2003, Gyeongju, Korea

514

	INTRODUCTION
	DESIGN
	IMPLEMENTATION
	PERFORMANCE
	Test Environments
	Response Time

	APPLICATIONS
	SUMMARY
	REFERENCES

