
AUTOMATED DIAGNOSIS OF PHYSICAL SYSTEMS

S. Narasimhan, UC Santa Cruz @ NASA Ames Research Center, CA, U.S.A.

Abstract
“If anything can go wrong, it will.” (Murphy’s Law)

Although deceptive in its simplicity, the above quote has
proved to be a profound insight into how things happen.
Things are likely to fail no matter how well the system is
designed. When a high degree of reliability and safety is
desired the effects of these failures must be mitigated, and
control must be maintained under all fault scenarios.
Faults need to be detected close to their onset so that
quick action can be taken by resetting control parameters
to compensate for the fault or by reconfiguring the system
to minimize the effects of the fault and thus prevent
damage. In this paper we provide a brief introduction to
variety of automated techniques for diagnosing faults and
then discuss in more detail one specific technology called
HyDE.

WHAT IS AUTOMATED DIAGNOSIS?
Fault diagnosis involves the detection of anomalous

system behavior and the identification of the cause for the
deviant behavior. Automated diagnosis refers to the use of
software technologies to assist in diagnosing faults in a
system. This is to be contrasted with autonomous
diagnosis which deals with software technologies that
operate autonomously to detect, isolate and compensate
for faults in a system.

We would like to introduce some definitions (taken
from IFAC Technical Committee SAFEPROCESS [1]) to
set the context for the rest of the paper.

Fault - A fault is an unpermitted deviation of at least
one characteristic property or parameter of the system
from acceptable, usual or standard conditions.

Fault Detection - Fault detection is monitoring
measured variables to determine if a fault has occurred in
the plant. If a fault has occurred, it may be important to
determine the time at which the fault occurred.

Fault Isolation - Fault Isolation is determining the type
and location of a fault once it is known that a fault has
occurred. It typically follows fault detection but the two
processes are often combined for additive faults.

Fault Identification - Fault Identification is determining
the size and time-variant behavior of a fault. It follows
fault isolation.

Fault may be of many types including:
• Plant, actuator, sensor or controller faults
• Additive or multiplicative faults
• Abrupt or incipient faults
• Persistent or intermittent faults
Diagnosis is made harder by several factors including
and not limited to:
• Typical only a few sensors are placed leading to

limited observability into system behavior.
• The data from sensors are noisy due to inherent

properties of the sensors

• There are unknown inputs acting on the systems,
due to lack of complete knowledge about
conditions in which system operates.

• The knowledge about how the system functions
may be limited.

• The effects of faults may be non-local and may
take some time to manifest.

In the rest of this paper we will introduce a sampling of
automated diagnosis techniques that deal with some of the
fault characteristics described above. We will briefly
describe these techniques and then focus on one specific
technique called HyDE.

AUTOMATED DIAGNOSIS TECHNIQUES
The diagnosis problem has been dealt with in several

domains from several angles resulting in a wide variety of
diagnosis approaches. Some of these include Expert
Systems, Case-based reasoning, Data-driven techniques
and Model-based reasoning.

Expert System Diagnosis [2,3]
Traditionally diagnosis was performed by human

troubleshooting experts who built up diagnostic
knowledge based on their expertise and experience. The
natural extension to this was to encode the diagnostic
knowledge in a machine storable structure. These
structures took the form of associations between observed
symptoms and probable fault occurrences. Tools were
built to assist in the creation of these structures and then
to use these structures for the diagnosis task. Once these
structures are built, users and non-expert operators could
troubleshoot the system in case of faults.

Some of the more commonly used structures to encode
expert diagnostic knowledge are rules and fault trees. A
rule describes the action(s) that should be taken if a
symptom is observed. A set of rules describing the
symptoms of all the possible faults is incorporated into a
rule-based reasoning system. The reasoning may use a
backward-chaining algorithm which starts at the
hypothesis (consequents of rules) and collects and verifies
evidence (antecedents of rules) that supports the
hypothesis. Alternately forward-chaining may be used
where rules whose antecedents match observed symptoms
are examined. When several rules match, a chain of rule
firings (based on pre-defined rule priority) is used to
establish the diagnosis. A fault tree (decision tree)
encodes diagnostic knowledge as a sequence of questions
that trace a path from the root of the tree to its leaf nodes
which represent diagnoses.

Advantages of expert systems are:
• Diagnosis structure is “certified” by experts and

can be trusted to produce “correct” results.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA FOAA01

Special Invited

701

• In many cases, deep understanding of the physical
properties of the system is either unavailable or too
costly to obtain.

• The diagnostic reasoning is fast and bounded both
temporally and computationally.

Disadvantages of expert systems are:
• All fault-symptom manifestations have to be

encoded for “correct” diagnosis.
• Troubleshooting experts may not be available.

Even when they are available it takes years of
experience for them to gather all the diagnostic
knowledge.

• The whole process has to be started from scratch
for each new application.

Case-based Diagnosis [4,5]
Case-based Reasoning Systems exploit knowledge

about solutions developed for past problems to solve
current problems. In this approach, experiences are stored
in the form of diagnostic cases. When a new case needs to
be diagnosed, stored cases are scanned to find any
matches with the new case. The new case is then added to
the library of stored cases under an appropriate category.

Like rule-based systems, past experience with normal
and abnormal behavior of a system are essential to
building effective case-based diagnosis systems. In
addition, case-based reasoning systems include a learning
component which makes possible adaptation of a past
solution to fit other, similar situations. This technique is
well suited for poorly understood problem areas for which
structured data are available to characterize operating
scenarios.

A case-based reasoning system consists of a case
library containing features that describe the problem,
outcomes, solutions, methods used and an assessment of
their efficacy. A coding mechanism is used to index the
case information so that the cases can be organized into
meaningful structures, such as clusters, enabling efficient
retrieval.

Advantages of case-based reasoners are:
• Only experience in the form of past solutions is

needed rather than a deep understanding of the
physical properties of the system.

• Diagnosis of cases that have been seen before is
very fast.

• It can be directly applied to any new application.
Disadvantages of case-based reasoners are:
• New “cases” cannot be diagnosed.
• A lot of prior experience is needed to build a large

database of cases.

Data-driven Diagnosis [6-10]
• Data-driven approaches are based on the assumption

that statistical characteristics of monitored data from the
system indicate abnormal events in the system. These
techniques transform the high-dimensional noisy data into
lower-dimensional information for detection and

diagnostic decisions allowing the ability to handle highly
collinear data of high dimensionality, substantially reduce
the dimensionality of the monitoring problem, and
compress the data for archiving purposes.

• Diagnosis using these approaches typically involves
two steps:

1. Learning Step – Prior to diagnosis, data from
various operational scenarios of the system is fed
to a learning algorithm which computes
characteristics of the data sets (in a much lower-
dimensional form). A classifier then tries to
classify the lower dimensional characteristics into
groups with similar properties. The classification
may be based on prior knowledge about the actual
operational scenarios.

2. Diagnosis Step – The learning algorithm is applied
on the data from real-time operation of the system
to compute lower-dimensional characteristics.
These characteristics are compared against learned
groups (from the classifier) to select the closest
group as the diagnosis.

Some of the approaches that use data-driven techniques
are Regression analysis, Principal components analysis,
Artificial neural networks, Filters, Harmonic analyzers,
Auto and cross-correlation functions, Fast Fourier
transform (FFT), Pattern Recognition, Feature Selection,
Model Selection, Ensemble Learning, and Support Vector
Machines.

Advantages of data-driven diagnosis are:
• No understanding of system properties is

necessary. Only data from operation of system is
necessary.

• Very high dimensional and noisy data can be
handled without any problems.

• The diagnostic inference is bounded and can be
very fast.

• Generic algorithms can be applied on any data set
from any application.

Disadvantages of data-driven diagnosis are:
• A lot of data about various diagnostic scenarios is

necessary for proper classification.
• The diagnosis results are very sensitive to the data

used.
Model-based Diagnosis [11-22]

Model-Based Diagnosis (MBD) departs from these
approaches by using a model of the system configuration
and behavior. MBD exploits the analytical redundancy
(functional relationships) between the model and the
system measurements. In principle, this means that a
model runs in parallel to the real process, and
discrepancies between the model outputs and real outputs
are utilized to detect and isolate faults. Some of the major
categories of model-based diagnosis techniques are
consistency-based approaches, control-theory based
approaches, and stochastic approaches.
Consistency-based Diagnosis [11-15]

In this approach an abstract model of the system is used
for diagnosis. The model may be discrete, discrete-event,

FOAA01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Special Invited

702

or continuous in form and typically includes only
information necessary to diagnose faults. The faults are
represented as changes in operational modes of
components of the system. The model is used to predict
the expected behavior of the system under hypothesized
conditions for operational modes of the system. The
predictions are compared against observations to
determine discrepancies. Discrepancies are used to
generate conflicts which drive a search process for
alternate hypothesis for operation modes. The
hypothesized operation modes that predict behavior
closest to observations are reported as diagnosis. Some of
the technologies that use this approach are GDE/Sherlock,
TRANSCEND, and Livingstone/L2.
Control-theory based approaches [16-18]

Quantitative diagnostic algorithms derived from the
control theory community use state estimation and
parameter estimation techniques for diagnosis. A
mathematical model of the system is used to perform
diagnosis as a two step process:

1. Residual Generation - Residuals are generated
from the model and information about inputs and outputs
of the system. Residuals are variables with zero value
when the plant operation is nominal and non-zero
otherwise, and

2. Decision Making - Decision procedure is applied
to discriminate non-zero residuals that are result of
modeling errors, unknown inputs, measurement errors
and those which reflect abnormal behavior.

The residual generator enhances the raw residuals in
one of the following two ways:

1. In response to a fault, only a specific set of
residual vector elements become non-zero (structured
residuals), or

2. In response to a fault, the residual vector lies in a
specific direction (fixed directional residuals).

The decision maker takes these enhanced residuals and
evaluates them to determine the fault. In the case of
structured residuals, this involves mapping the specific set
of non-zero residuals to faults. Some of the approaches
that use this method are structured parity equations,
structured residuals from state equations, diagnostic
observer design with direct eigen-structure assignment,
and unknown input observer in Kronecker canonical
form. In the case of the fixed directional residuals, the
decision maker finds pre-defined fault residual direction
that is closest the direction of the actual residuals. Some
of the approaches that use this method are detection filter
design by eigen-structure assignment, fixed direction
residuals from parity equations, and matched filters.
Stochastic Approaches [19-21]

In recent years there has been a push towards the use of
probabilistic approaches for diagnosis. This is motivated
by the fact that a lot of uncertainty exists in the diagnosis
process. The sources of uncertainty may be the models,
the sensors, the environment, the diagnosis algorithms
etc. These techniques maintain a belief state (a set of
possible diagnoses ranked by probabilities) about the
system and update the beliefs using probabilistic update

mechanisms. Some examples include Bayes Nets,
Kalman Filters and Particle Filters.

Advantages of model-based diagnosis are:
• Model libraries can be re-used.
• Reasoning algorithms remain the same for all

applications.
Disadvantages of model-based diagnosis are:
• Someone has to build models.
• Reasoning time is not bounded and my take very

long.

HYDE
We will now talk about one specific model-based
diagnosis technology that is attempting to integrate some
of the techniques describe above. HyDE (Hybrid
Diagnosis Engine) [22] combines ideas from consistency-
based, control-theory-based and stochastic approaches to
provide a general, flexible and extensible architecture for
stochastic and hybrid diagnosis. HyDE supports the use of
multiple paradigms and is extensible to support new
paradigms. HyDE also offers a library of algorithms to be
used in the various steps of the diagnostic reasoning
process. The key features of HyDE are:

• Diagnosis of multiple discrete faults.
• Support for hybrid models, including

autonomous and commanded discrete switching.
• Support for stochastic models and stochastic

reasoning.
• Capability for handling time delay in the

propagation of fault effects.

HyDE Models
HyDE models have two parts, the transition model and

the behavior model. The transition model describes the
components that make up the system, the various
operating modes of the system (include faulty ones), and
the conditions for transitions between the operating
modes. The behavior model specifies the behavior
evolution and has three parts: propagation model,
integration model and dependency model. The
information in the propagation model allows the
estimation of unknown variable values from known
variable values. The dependency model captures
information about the dependencies between variables,
models and components. The integration model describes
how the variables’ values are propagated across time
steps. HyDE supports the representation of each of the
behavior models in more than one paradigm.

HyDE Reasoning
HyDE reasoning is the maintenance of a set of

weighted candidates. A candidate represents the
hypothesized trajectory of the system inferred from the
transition and behavior models, knowledge of the initial
operating modes of all components and initial values of
all variables, and the sensor observations reported to
HyDE. The candidates’ weights are a way of ranking
them and depend on several factors, including prior
probabilities of transitions and the degree of fit between

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA FOAA01

Special Invited

703

model predictions and observations. Although weights are
in the range [0, 1], weight is not a probability measure,
specifically posterior probability.

Each candidate contains a possible trajectory of system
behavior evolution represented in the form of a hybrid
state history and transition history. The hybrid state is a
snapshot of the entire system state at any single instant. It
associates all components with their current operating
modes and all variables with their current values.
Applications run HyDE at discrete time steps, typically
but not necessarily when observations are available. Time
steps need not be periodic. For each time step that HyDE
reasons about, a candidate contains two hybrid states, one
at the beginning of the time step and one at the end, as
well as the set of transitions taken by the system between
the previous and current time steps.

At time step 0 the candidate set is initialized with
candidate(s) derived from the initial hybrid state of the
system. Once the initial candidate set has been created,
HyDE’s reasoning process uses the same sequence of
operations for each time step. The reasoning process can
be divided into three categories of operations,

 1. Candidate Set Management maintains the
candidate set. The operations include updating weight of
all candidates, pruning candidates that do not satisfy
minimum weight requirements, adding new candidates
(the next best ones from the candidate generator) when
necessary, and optionally re-sampling or normalizing the
distribution of weights.

2. Candidate Testing deals with operations on a
single candidate. The operations include determining the
occurrence of any transitions, estimating the hybrid states
at the beginning and end of a time step, comparing against
observations to update weight of the candidate as well as
reporting inconsistencies.

3. Candidate Generation creates candidate
generators from inconsistencies reported by Candidate
Testing and supplies the next-best potential (untested)
candidate to Candidate Set Management when requested.
This is achieved using a conflict directed search. First
reported inconsistencies are used to generate conflicts
(subset of operating modes that cannot all be true at the
same time). The conflicts are then used to guide a search
for new candidates optimizing some candidate property
(typically weight or size).

HyDE Implementation Status
The HyDE reasoning engine is implemented in C++.

Complete diagnosis reasoning can be performed. It passes
an extensive and demanding test suite on Windows,
Solaris, Linux and VxWorks platforms. A graphical
modeling environment is available using the GME open-
source tool [23]. The same environment can also be used
to set initial state and configuration parameters.
Observations can be reported to HyDE either through
streams (file or otherwise) or an API allowing integration
with a real-time system. HyDE binaries are available free
of cost for non-commercial purposes.

HyDE Applications
HyDE has successfully used (and continues to be used)

on several projects including:
• The Drilling Automation for Mars Environment

(DAME) project is aimed at developing a
lightweight, low-power drill prototype that can be
mounted on a Mars Lander and drill several meters
below the Mars surface for conducting geology and
astrobiology research. Three kinds of diagnosis
technologies were used on this project, HyDE for
model-based diagnosis, a rule-based diagnosis
system, and a neural-network diagnosis system.
There were four rounds of testing over a period of
two years. In 2005, laboratory experiments were run
at Honeybee Robotics, the company that constructed
the drill. Later in 2005, field tests were performed at
Houghton Crater on Devon Island, in the Canadian
arctic, chosen to approximate the Martian terrain and
climate. Based on the results, laboratory tests were
performed at NASA Ames Research Center in 2006
to improve the models for better diagnosis. Finally,
there was a second field test at the Houghton Crater.
A summary of HyDE’s final performance: All of the
modeled fault modes were encountered in the field;
some, such as choking, binding, and hard material,
numerous times. The model-based diagnostic system
was able to successfully identify the faults in roughly
85% of the cases. The rate of false positive
diagnoses was approximately 5%.

• The Advanced Diagnostic and Prognostic Test-bed
(ADAPT) was developed to test, measure, evaluate,
and mature diagnostic and prognostic health-
management technologies. The initial test-bed
configuration is functionally representative of an
exploration vehicle’s Electrical Power System. HyDE
was used to build an 86-component model of the test-
bed components. HyDE passed all the acceptance
tests, which included a set of pre-defined fault
scenarios and acceptance bounds on the time to
diagnosis. Additional tests were run on other fault
scenarios (not included in acceptance tests) and
HyDE was able to diagnose all but one of these
scenarios (resulting from inadequate information in
the model).

• The Autonomous Lander Demonstrator project
(ALDER) demonstrated autonomy capabilities
relevant to a small spacecraft mission on traditional
flight hardware integrated with traditional flight
software. Diagnosis systems, including HyDE, were
ported to VxWorks and executed on the Aitech S950
processor, interoperating with autonomy technologies
for planning, diagnosis, computer vision and adaptive
control. A HyDE component model of a simple
propulsion system (tanks, valves, regulators, attitude
control system and main engine) detected common
faults such as stuck valves and regulator failures.

• Several other projects are using HyDE for offline
diagnosis using simulated data. The International

FOAA01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Special Invited

704

Space Station (ISS) Electrical Power System (EPS)
recovery procedure automation project uses HyDE to
supply current hybrid state to an execution system
that will attempt to partially automate recovery
procedures based on this information. The Aircraft
Landing Gear Diagnosis project is using HyDE to
model the landing gear and wheels of an aircraft in an
effort to diagnose faults during landing. The
Spacecraft Engine Diagnosis project uses HyDE to
model components of the J2X engine, which is
expected to power the upper stage of the NASA
Crew Launch Vehicle (CLV). HyDE was also
integrated with the CLARAty (Coupled Layer
Architecture for Robotic Autonomy) architecture.

HyDE Future Work
HyDE is still a work in progress and we expect to keep

adding to the capabilities to HyDE through addition of
new modeling paradigms and algorithms. We have
identified several major areas for future work. We would
like provide mechanisms for validation and verification
(V&V) of models and algorithms, which would be
prerequisite for deployment on real systems. We would
like to add support for parametric faults. This would
require support for modeling of parameters representing
such faults, additional algorithms for parameter
estimation and modifications to existing algorithms for
detection and isolation of such faults. We would also like
to use the existing models and algorithms for suggesting
recovery sequences.

References
[1] R.J. Patton and J. Chen, “Robust Model-based Fault

Diagnosis for Dynamic Systems” Boston, 1999,
Kluwer Academic Publishers.

[2] Giarratano, Joseph C. and Riley, Gary D., “Expert
Systems: Principles and Programming”, Fourth
Edition, PWS Publishing Company, Boston MA,
2004.

[3] Buchanan, B.G. and Shortliffe, E.H., editors, “Rule-
based Expert Systems: The MYCIN Experiments of
the Stanford Heuristic Programming Project”,
Addison-Wesley, 1984.

[4] Aamodt, A., Plaza, E.: “Case-Based Reasoning:
Foundational Issues, Methodological Variations, and
System Approaches”, AI- Communications, 7 (i), pp.
39-59. 1993.

[5] Varma, A. and Roddy, N., “ICARUS: A Case-Based
System for Locomotive Diagnostics,” Engineering
Applications of Artificial Intelligence Journal, 1999.

[6] Duda, R.O., Hart, P.E., and Stork, D., Pattern
classification, John Wiley & Sons, New York, 2000.

[7] Bishop, C.M., Neural Networks for Pattern
Recognition, Clarendon Press, Oxford, 1997.

[8] Cherkassky, V., and Mulier, F., Learning from data,
concepts, theory and methods, John Wiley & Sons,
New York, 1998.

[9] Breiman, L., Friedman, J.H., Olshen, R.A., and
Stone, C.J., Classification and Regression Trees,
Wadsworth, California, 1984.

[10] Quinlan, J.R., C4.5: Programs for Machine Learning,
San Mateo, CA: Morgan Kaufmann, 1993.

[11] W. Hamscher, L. Console, and J. De Kleer.
“Readings in Model-based Diagnosis.” San Mateo,
CA: Morgan Kaufmann, 1992.

[12] J. De Kleer and B. C. Williams. “Diagnosing
multiple faults”, Artificial Intelligence, 32(1):97–130,
1987.

[13] P. J. Mosterman and G. Biswas. “Diagnosis of
continuous valued systems in transient operating
regions”. IEEE Transactions on Systems, Man, and
Cybernetics, 1(6):554–565, 1999.

[14] B. Williams and P. Nayak. “A model-based approach
to reactive self-configuring systems”, in AAAI, pp.
971–978, (1996).

[15] J. Kurien and P. Nayak. Back to the Future with
Consistency-based Trajectory Tracking, AAA/IAAI
2000, pp370-377

[16] White, J.E. and J.L. Speyer. Detection Filter Design:
Spectral Theory and Algorithms. IEEE Transactions
on Automatic Control, 1987. 32: pp. 593-603.

[17] Chow, E.Y. and A.S. Willsky. Analytical
Redundancy and the Design of Robust Failure
Detection Systems. IEEE Transactions on Automatic
Control, 1984. AC-29: pp. 603-614.

[18] J. Gertler. “Fault Detection and Diagnosis in
Engineering Systems”. New York: Marcel Dekker,
1988.

[19] M. Hofbaur and B. Williams. “Mode Estimation of
Probabilistic Hybrid Systems”, in Proc. 5th
International Workshop on Hybrid Systems:
Computation and Control (HSCC ’02), Stanford, CA,
USA, pp. 253-266, 2002.

[20] R. Dearden and D, Clancy. “Particle Filters for Real-
time Fault Detection in Planetary Rovers”, in Proc.
13th International Workshop on Principles of
Diagnosis (DX ’02), Semmering, Austria, pp. 1-6,
2002.

 [21] S. Narasimhan and G. Biswas. “Model-based
Diagnosis of Hybrid Systems”. Eighteenth Intl. Joint
Conf. on Artificial Intelligence, Acapulco, Mexico,
Aug., 2003.

[22] S. Narasimhan and L. Brownston. “HyDE – A
General Framework for Stochastic and Hybrid Model-
based Diagnosis”, in Proc. 18th International
Workshop on Principles of Diagnosis (DX ’07),
Nashville, USA, pp. 162-169, 2007.

[23] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett
J., Thomason IV C., Nordstrom G., Sprinkle J.,
Volgyesi P.: The Generic Modeling Environment,
Workshop on Intelligent Signal Processing, Budapest,
Hungary, May 17, 2001.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA FOAA01

Special Invited

705

