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Abstract 
“If anything can go wrong, it will.” (Murphy’s Law) 

Although deceptive in its simplicity, the above quote has 
proved to be a profound insight into how things happen. 
Things are likely to fail no matter how well the system is 
designed. When a high degree of reliability and safety is 
desired the effects of these failures must be mitigated, and 
control must be maintained under all fault scenarios. 
Faults need to be detected close to their onset so that 
quick action can be taken by resetting control parameters 
to compensate for the fault or by reconfiguring the system 
to minimize the effects of the fault and thus prevent 
damage. In this paper we provide a brief introduction to 
variety of automated techniques for diagnosing faults and 
then discuss in more detail one specific technology called 
HyDE. 

WHAT IS AUTOMATED DIAGNOSIS? 
Fault diagnosis involves the detection of anomalous 

system behavior and the identification of the cause for the 
deviant behavior. Automated diagnosis refers to the use of 
software technologies to assist in diagnosing faults in a 
system. This is to be contrasted with autonomous 
diagnosis which deals with software technologies that 
operate autonomously to detect, isolate and compensate 
for faults in a system. 

We would like to introduce some definitions (taken 
from IFAC Technical Committee SAFEPROCESS [1]) to 
set the context for the rest of the paper. 

Fault - A fault is an unpermitted deviation of at least 
one characteristic property or parameter of the system 
from acceptable, usual or standard conditions. 

Fault Detection - Fault detection is monitoring 
measured variables to determine if a fault has occurred in 
the plant. If a fault has occurred, it may be important to 
determine the time at which the fault occurred.  

Fault Isolation - Fault Isolation is determining the type 
and location of a fault once it is known that a fault has 
occurred. It typically follows fault detection but the two 
processes are often combined for additive faults. 

Fault Identification - Fault Identification is determining 
the size and time-variant behavior of a fault. It follows 
fault isolation. 

Fault may be of many types including: 
• Plant, actuator, sensor or controller faults 
• Additive or multiplicative faults 
• Abrupt or incipient faults 
• Persistent or intermittent faults 
Diagnosis is made harder by several factors including 
and not limited to: 
• Typical only a few sensors are placed leading to 

limited observability into system behavior. 
• The data from sensors are noisy due to inherent 

properties of the sensors 

• There are unknown inputs acting on the systems, 
due to lack of complete knowledge about 
conditions in which system operates. 

• The knowledge about how the system functions 
may be limited. 

• The effects of faults may be non-local and may 
take some time to manifest. 

In the rest of this paper we will introduce a sampling of 
automated diagnosis techniques that deal with some of the 
fault characteristics described above. We will briefly 
describe these techniques and then focus on one specific 
technique called HyDE.  

AUTOMATED DIAGNOSIS TECHNIQUES 
The diagnosis problem has been dealt with in several 

domains from several angles resulting in a wide variety of 
diagnosis approaches. Some of these include Expert 
Systems, Case-based reasoning, Data-driven techniques 
and Model-based reasoning.   

Expert System Diagnosis [2,3] 
Traditionally diagnosis was performed by human 

troubleshooting experts who built up diagnostic 
knowledge based on their expertise and experience. The 
natural extension to this was to encode the diagnostic 
knowledge in a machine storable structure. These 
structures took the form of associations between observed 
symptoms and probable fault occurrences. Tools were 
built to assist in the creation of these structures and then 
to use these structures for the diagnosis task. Once these 
structures are built, users and non-expert operators could 
troubleshoot the system in case of faults.   

Some of the more commonly used structures to encode 
expert diagnostic knowledge are rules and fault trees. A 
rule describes the action(s) that should be taken if a 
symptom is observed. A set of rules describing the 
symptoms of all the possible faults is incorporated into a 
rule-based reasoning system. The reasoning may use a 
backward-chaining algorithm which starts at the 
hypothesis (consequents of rules) and collects and verifies 
evidence (antecedents of rules) that supports the 
hypothesis. Alternately forward-chaining may be used 
where rules whose antecedents match observed symptoms 
are examined.  When several rules match, a chain of rule 
firings (based on pre-defined rule priority) is used to 
establish the diagnosis. A fault tree (decision tree) 
encodes diagnostic knowledge as a sequence of questions 
that trace a path from the root of the tree to its leaf nodes 
which represent diagnoses.  

Advantages of expert systems are: 
• Diagnosis structure is “certified” by experts and 

can be trusted to produce “correct” results. 
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• In many cases, deep understanding of the physical 
properties of the system is either unavailable or too 
costly to obtain. 

• The diagnostic reasoning is fast and bounded both 
temporally and computationally. 

Disadvantages of expert systems are: 
• All fault-symptom manifestations have to be 

encoded for “correct” diagnosis. 
• Troubleshooting experts may not be available. 

Even when they are available it takes years of 
experience for them to gather all the diagnostic 
knowledge. 

• The whole process has to be started from scratch 
for each new application. 

Case-based Diagnosis [4,5] 
Case-based Reasoning Systems exploit knowledge 

about solutions developed for past problems to solve 
current problems. In this approach, experiences are stored 
in the form of diagnostic cases. When a new case needs to 
be diagnosed, stored cases are scanned to find any 
matches with the new case. The new case is then added to 
the library of stored cases under an appropriate category.  

Like rule-based systems, past experience with normal 
and abnormal behavior of a system are essential to 
building effective case-based diagnosis systems. In 
addition, case-based reasoning systems include a learning 
component which makes possible adaptation of a past 
solution to fit other, similar situations. This technique is 
well suited for poorly understood problem areas for which 
structured data are available to characterize operating 
scenarios.  

A case-based reasoning system consists of a case 
library containing features that describe the problem, 
outcomes, solutions, methods used and an assessment of 
their efficacy. A coding mechanism is used to index the 
case information so that the cases can be organized into 
meaningful structures, such as clusters, enabling efficient 
retrieval. 

Advantages of case-based reasoners are: 
• Only experience in the form of past solutions is 

needed rather than a deep understanding of the 
physical properties of the system. 

• Diagnosis of cases that have been seen before is 
very fast. 

• It can be directly applied to any new application. 
Disadvantages of case-based reasoners are: 
• New “cases” cannot be diagnosed.  
• A lot of prior experience is needed to build a large 

database of cases. 
 

Data-driven Diagnosis [6-10] 
• Data-driven approaches are based on the assumption 

that statistical characteristics of monitored data from the 
system indicate abnormal events in the system. These 
techniques transform the high-dimensional noisy data into 
lower-dimensional information for detection and 

diagnostic decisions allowing the ability to handle highly 
collinear data of high dimensionality, substantially reduce 
the dimensionality of the monitoring problem, and 
compress the data for archiving purposes.  

• Diagnosis using these approaches typically involves 
two steps: 

1. Learning Step – Prior to diagnosis, data from 
various operational scenarios of the system is fed 
to a learning algorithm which computes 
characteristics of the data sets (in a much lower-
dimensional form). A classifier then tries to 
classify the lower dimensional characteristics into 
groups with similar properties. The classification 
may be based on prior knowledge about the actual 
operational scenarios. 

2. Diagnosis Step – The learning algorithm is applied 
on the data from real-time operation of the system 
to compute lower-dimensional characteristics. 
These characteristics are compared against learned 
groups (from the classifier) to select the closest 
group as the diagnosis. 

Some of the approaches that use data-driven techniques 
are Regression analysis, Principal components analysis, 
Artificial neural networks, Filters, Harmonic analyzers, 
Auto and cross-correlation functions, Fast Fourier 
transform (FFT), Pattern Recognition, Feature Selection, 
Model Selection, Ensemble Learning, and Support Vector 
Machines. 

Advantages of data-driven diagnosis are: 
• No understanding of system properties is 

necessary. Only data from operation of system is 
necessary. 

• Very high dimensional and noisy data can be 
handled without any problems. 

• The diagnostic inference is bounded and can be 
very fast. 

• Generic algorithms can be applied on any data set 
from any application. 

Disadvantages of data-driven diagnosis are: 
• A lot of data about various diagnostic scenarios is 

necessary for proper classification. 
• The diagnosis results are very sensitive to the data 

used. 
Model-based Diagnosis [11-22] 

Model-Based Diagnosis (MBD) departs from these 
approaches by using a model of the system configuration 
and behavior. MBD exploits the analytical redundancy 
(functional relationships) between the model and the 
system measurements. In principle, this means that a 
model runs in parallel to the real process, and 
discrepancies between the model outputs and real outputs 
are utilized to detect and isolate faults. Some of the major 
categories of model-based diagnosis techniques are 
consistency-based approaches, control-theory based 
approaches, and stochastic approaches. 
Consistency-based Diagnosis [11-15] 

In this approach an abstract model of the system is used 
for diagnosis. The model may be discrete, discrete-event, 

FOAA01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Special Invited

702



or continuous in form and typically includes only 
information necessary to diagnose faults. The faults are 
represented as changes in operational modes of 
components of the system. The model is used to predict 
the expected behavior of the system under hypothesized 
conditions for operational modes of the system. The 
predictions are compared against observations to 
determine discrepancies. Discrepancies are used to 
generate conflicts which drive a search process for 
alternate hypothesis for operation modes. The 
hypothesized operation modes that predict behavior 
closest to observations are reported as diagnosis. Some of 
the technologies that use this approach are GDE/Sherlock, 
TRANSCEND, and Livingstone/L2. 
Control-theory based approaches [16-18] 

Quantitative diagnostic algorithms derived from the 
control theory community use state estimation and 
parameter estimation techniques for diagnosis. A 
mathematical model of the system is used to perform 
diagnosis as a two step process:  

1. Residual Generation - Residuals are generated 
from the model and information about inputs and outputs 
of the system. Residuals are variables with zero value 
when the plant operation is nominal and non-zero 
otherwise, and 

2. Decision Making - Decision procedure is applied 
to discriminate non-zero residuals that are result of 
modeling errors, unknown inputs, measurement errors 
and those which reflect abnormal behavior. 

The residual generator enhances the raw residuals in 
one of the following two ways: 

1. In response to a fault, only a specific set of 
residual vector elements become non-zero (structured 
residuals), or  

2. In response to a fault, the residual vector lies in a 
specific direction (fixed directional residuals). 

The decision maker takes these enhanced residuals and 
evaluates them to determine the fault. In the case of 
structured residuals, this involves mapping the specific set 
of non-zero residuals to faults. Some of the approaches 
that use this method are structured parity equations, 
structured residuals from state equations, diagnostic 
observer design with direct eigen-structure assignment, 
and unknown input observer in Kronecker canonical 
form. In the case of the fixed directional residuals, the 
decision maker finds pre-defined fault residual direction 
that is closest the direction of the actual residuals. Some 
of the approaches that use this method are detection filter 
design by eigen-structure assignment, fixed direction 
residuals from parity equations, and matched filters. 
Stochastic Approaches [19-21] 

In recent years there has been a push towards the use of 
probabilistic approaches for diagnosis. This is motivated 
by the fact that a lot of uncertainty exists in the diagnosis 
process. The sources of uncertainty may be the models, 
the sensors, the environment, the diagnosis algorithms 
etc. These techniques maintain a belief state (a set of 
possible diagnoses ranked by probabilities) about the 
system and update the beliefs using probabilistic update 

mechanisms. Some examples include Bayes Nets, 
Kalman Filters and Particle Filters. 

Advantages of model-based diagnosis are: 
• Model libraries can be re-used.  
• Reasoning algorithms remain the same for all 

applications. 
Disadvantages of model-based diagnosis are: 
• Someone has to build models.  
• Reasoning time is not bounded and my take very 

long. 
 

HYDE 
We will now talk about one specific model-based 
diagnosis technology that is attempting to integrate some 
of the techniques describe above. HyDE (Hybrid 
Diagnosis Engine) [22] combines ideas from consistency-
based, control-theory-based and stochastic approaches to 
provide a general, flexible and extensible architecture for 
stochastic and hybrid diagnosis. HyDE supports the use of 
multiple paradigms and is extensible to support new 
paradigms. HyDE also offers a library of algorithms to be 
used in the various steps of the diagnostic reasoning 
process. The key features of HyDE are: 

• Diagnosis of multiple discrete faults. 
• Support for hybrid models, including 

autonomous and commanded discrete switching. 
• Support for stochastic models and stochastic 

reasoning. 
• Capability for handling time delay in the 

propagation of fault effects. 

HyDE Models 
HyDE models have two parts, the transition model and 

the behavior model. The transition model describes the 
components that make up the system, the various 
operating modes of the system (include faulty ones), and 
the conditions for transitions between the operating 
modes. The behavior model specifies the behavior 
evolution and has three parts: propagation model, 
integration model and dependency model. The 
information in the propagation model allows the 
estimation of unknown variable values from known 
variable values. The dependency model captures 
information about the dependencies between variables, 
models and components. The integration model describes 
how the variables’ values are propagated across time 
steps. HyDE supports the representation of each of the 
behavior models in more than one paradigm. 

HyDE Reasoning 
HyDE reasoning is the maintenance of a set of 

weighted candidates. A candidate represents the 
hypothesized trajectory of the system inferred from the 
transition and behavior models, knowledge of the initial 
operating modes of all components and initial values of 
all variables, and the sensor observations reported to 
HyDE. The candidates’ weights are a way of ranking 
them and depend on several factors, including prior 
probabilities of transitions and the degree of fit between 
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model predictions and observations. Although weights are 
in the range [0, 1], weight is not a probability measure, 
specifically posterior probability. 

Each candidate contains a possible trajectory of system 
behavior evolution represented in the form of a hybrid 
state history and transition history. The hybrid state is a 
snapshot of the entire system state at any single instant. It 
associates all components with their current operating 
modes and all variables with their current values. 
Applications run HyDE at discrete time steps, typically 
but not necessarily when observations are available. Time 
steps need not be periodic. For each time step that HyDE 
reasons about, a candidate contains two hybrid states, one 
at the beginning of the time step and one at the end, as 
well as the set of transitions taken by the system between 
the previous and current time steps.  

At time step 0 the candidate set is initialized with 
candidate(s) derived from the initial hybrid state of the 
system. Once the initial candidate set has been created, 
HyDE’s reasoning process uses the same sequence of 
operations for each time step. The reasoning process can 
be divided into three categories of operations, 

 1. Candidate Set Management maintains the 
candidate set. The operations include updating weight of 
all candidates, pruning candidates that do not satisfy 
minimum weight requirements, adding new candidates 
(the next best ones from the candidate generator) when 
necessary, and optionally re-sampling or normalizing the 
distribution of weights.  

2. Candidate Testing deals with operations on a 
single candidate. The operations include determining the 
occurrence of any transitions, estimating the hybrid states 
at the beginning and end of a time step, comparing against 
observations to update weight of the candidate as well as 
reporting inconsistencies.  

3. Candidate Generation creates candidate 
generators from inconsistencies reported by Candidate 
Testing and supplies the next-best potential (untested) 
candidate to Candidate Set Management when requested. 
This is achieved using a conflict directed search. First 
reported inconsistencies are used to generate conflicts 
(subset of operating modes that cannot all be true at the 
same time). The conflicts are then used to guide a search 
for new candidates optimizing some candidate property 
(typically weight or size). 

HyDE Implementation Status 
The HyDE reasoning engine is implemented in C++. 

Complete diagnosis reasoning can be performed. It passes 
an extensive and demanding test suite on Windows, 
Solaris, Linux and VxWorks platforms. A graphical 
modeling environment is available using the GME open-
source tool [23]. The same environment can also be used 
to set initial state and configuration parameters. 
Observations can be reported to HyDE either through 
streams (file or otherwise) or an API allowing integration 
with a real-time system. HyDE binaries are available free 
of cost for non-commercial purposes. 

HyDE Applications 
HyDE has successfully used (and continues to be used) 

on several projects including: 
• The Drilling Automation for Mars Environment 

(DAME) project is aimed at developing a 
lightweight, low-power drill prototype that can be 
mounted on a Mars Lander and drill several meters 
below the Mars surface for conducting geology and 
astrobiology research. Three kinds of diagnosis 
technologies were used on this project, HyDE for 
model-based diagnosis, a rule-based diagnosis 
system, and a neural-network diagnosis system. 
There were four rounds of testing over a period of 
two years. In 2005, laboratory experiments were run 
at Honeybee Robotics, the company that constructed 
the drill. Later in 2005, field tests were performed at 
Houghton Crater on Devon Island, in the Canadian 
arctic, chosen to approximate the Martian terrain and 
climate. Based on the results, laboratory tests were 
performed at NASA Ames Research Center in 2006 
to improve the models for better diagnosis. Finally, 
there was a second field test at the Houghton Crater. 
A summary of HyDE’s final performance: All of the 
modeled fault modes were encountered in the field; 
some, such as choking, binding, and hard material, 
numerous times.  The model-based diagnostic system 
was able to successfully identify the faults in roughly 
85% of the cases.  The rate of false positive 
diagnoses was approximately 5%. 

• The Advanced Diagnostic and Prognostic Test-bed 
(ADAPT) was developed to test, measure, evaluate, 
and mature diagnostic and prognostic health-
management technologies. The initial test-bed 
configuration is functionally representative of an 
exploration vehicle’s Electrical Power System. HyDE 
was used to build an 86-component model of the test-
bed components. HyDE passed all the acceptance 
tests, which included a set of pre-defined fault 
scenarios and acceptance bounds on the time to 
diagnosis. Additional tests were run on other fault 
scenarios (not included in acceptance tests) and 
HyDE was able to diagnose all but one of these 
scenarios (resulting from inadequate information in 
the model).  

• The Autonomous Lander Demonstrator project 
(ALDER) demonstrated autonomy capabilities 
relevant to a small spacecraft mission on traditional 
flight hardware integrated with traditional flight 
software. Diagnosis systems, including HyDE, were 
ported to VxWorks and executed on the Aitech S950 
processor, interoperating with autonomy technologies 
for planning, diagnosis, computer vision and adaptive 
control. A HyDE component model of a simple 
propulsion system (tanks, valves, regulators, attitude 
control system and main engine) detected common 
faults such as stuck valves and regulator failures. 

• Several other projects are using HyDE for offline 
diagnosis using simulated data. The International 
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Space Station (ISS) Electrical Power System (EPS) 
recovery procedure automation project uses HyDE to 
supply current hybrid state to an execution system 
that will attempt to partially automate recovery 
procedures based on this information. The Aircraft 
Landing Gear Diagnosis project is using HyDE to 
model the landing gear and wheels of an aircraft in an 
effort to diagnose faults during landing. The 
Spacecraft Engine Diagnosis project uses HyDE to 
model components of the J2X engine, which is 
expected to power the upper stage of the NASA 
Crew Launch Vehicle (CLV). HyDE was also 
integrated with the CLARAty (Coupled Layer 
Architecture for Robotic Autonomy) architecture. 

HyDE Future Work  
HyDE is still a work in progress and we expect to keep 

adding to the capabilities to HyDE through addition of 
new modeling paradigms and algorithms. We have 
identified several major areas for future work. We would 
like provide mechanisms for validation and verification 
(V&V) of models and algorithms, which would be 
prerequisite for deployment on real systems. We would 
like to add support for parametric faults. This would 
require support for modeling of parameters representing 
such faults, additional algorithms for parameter 
estimation and modifications to existing algorithms for 
detection and isolation of such faults. We would also like 
to use the existing models and algorithms for suggesting 
recovery sequences. 
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