
THE HIGH PERFORMANCE DATABASE ARCHIVER FOR THE LHC
EXPERIMENTS

M. Gonzalez-Berges, CERN, Geneva, Switzerland

Abstract
Each of the Large Hadron Collider (LHC) experiments

will be controlled by a large distributed system built with
the Supervisory Control and Data Acquisition (SCADA)
tool Prozeßvisualisierungs- und Steuerungsystem (PVSS)
[1]. There will be in the order of 150 computers and one
million input/output parameters per experiment. The
values read from the hardware, the alarms generated and
the user actions will be archived for the later physics
analysis, the operation and the debugging of the control
system itself. Although the original PVSS implementation
of a database archiver was appropriate for standard
industrial use, the performance was not sufficient for the
experiments. A collaboration was setup between CERN
and ETM, the company that develops PVSS. Changes in
the architecture and several optimizations were made and
tested in a system of a comparable size to the final ones.
As a result, we have been able to improve the
performance by more than one order of magnitude, and
what is more important, we now have a scalable
architecture based on the Oracle clustering technology
(Real Application Cluster, RAC). This architecture can
deal with the requirements for insertion rate, data
querying and manageability of the high volume of data,
e.g. an insertion rate of > 150,000 changes/s was achieved
with a 6 node RAC cluster.

INTRODUCTION
The control system for an LHC experiment is

composed of two parts: the Front End (FE) and the Back
End (BE). The Front End is closer to the detector
equipment and is responsible for tasks such as data
acquisition, filtering, real time control loops and
interlocks. The Back End is built on top of the FE and its
main functions are alarm handling, graphical user
interfaces, hierarchical operation, interface to external
systems and data archiving. The BE runs on a set of
around 150 Windows and/or Linux computers connected
together in a distributed system. The application has been
developed using the SCADA tool PVSS and the JCOP
Framework [2].

The data archived from the 150 systems will go to a
central database server. The experiments have set a
requirement of storing simultaneously 1000 changes/s per
system. This rate will not be required continuously but
rather as a peak during short periods of time. However,
having a system that can handle this rate continuously and
that scales with the number of clients has some
advantages. Firstly, future system upgrades where more
systems are added or higher rates are required can be
handled. Secondly, if the archiver is optimized, more

resources will be available in the database server for other
tasks (e.g. queries).

ARCHIVING IN PVSS
One of the main features of PVSS is that it is device

oriented. A user can define a device type that can then be
easily instantiated. The elements of the device type or the
device instances (equivalent to the attributes in object
oriented terminology) can be configured to be archived
either to file or to a database. These elements can
represent data read from the equipment (e.g. temperature),
commands (e.g. voltage set point) sent to the hardware or
any parameter internal to the application (e.g. memory
left in the computer). This is shown in Figure 1.

Although PVSS works in terms of devices, the fact that
the elements are stored individually makes it appropriate
to use a relational database to store the changes.

It is also possible to store the alarms associated with the
elements. The work done so far concentrates on the
storage of the values of the elements rather than the
alarms and this is presented in the rest of the paper.

PVSS system

Front End/External
systems

Monitored
values

Commands/
Settings

Alarms

Storage

Commands/
Settings

Figure 1. Overview of the PVSS archiving.

PVSS SYSTEM (CLIENT SIDE)
Initially we tested a setup with a single PVSS system

(i.e. one computer) storing data to an Oracle server. A
continuous rate of around 100 changes per second could
be reached before the system started to buffer data. The
bottleneck was in the Archive Manager (see Fig. 2) that
was taking most of the CPU. This PVSS process is
responsible for sending values to the database, after
smoothing has been applied by the Data Manager.

We looked into the way that data is sent to the database.
Each individual change in the PVSS system was sent
without any grouping. In addition, a generic interface to
the database was used to have a database vendor

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA ROPA02

Data and Information Management

517

independent solution. This prevented us from using many
of the optimizations available in Oracle.

To improve this we chose to use the Oracle native client
libraries called OCCI (Oracle C++ Call Interface) for the
performance improvements. The main gain was to use
bulk insertion: value changes are first stored in a block in
the memory of the client and afterward transferred to the
database server. The possibility to set a timeout to send
blocks even if they are not full was also included. Other
advantages of using OCCI were the direct use of floating
point numbers and better connection handling.

Performance was measured again after the changes
mentioned above were implemented. A continuous rate of
2000 changes/s, generated with a standard PC, was
archived for several hours. This covered the expected
peak rate for a single PVSS system, which will only be
necessary for some minutes. The generic database
interface was kept so that the archiver can still run with
other database types, although obviously with reduced
performance.

DATABASE SERVER
After data is sent to the database server, it has to be

inserted into the appropriate history table. This is done
with code running in the server written in PL/SQL.

After the optimizations in the client code, we tested
with a group of clients each with a rate of 1000 changes/s.
The server could handle around 20-30 clients depending
on the configuration we used (e.g. block size for grouping
value changes). This was clearly below the 150 systems
required for an LHC experiment. We had two possibilities

to increase the performance of the database server: buy a
better server or use the clustering technology of Oracle.
We chose the second solution because of the cost (PCs
could be used), the redundancy (the server can continue
working even if some nodes fail) and the flexibility (it is
possible to upgrade the server by adding more nodes).

Real Application Cluster (RAC) [4] is the Oracle
technology for building clustered servers. It was first
introduced in Oracle version 9i, and it is now a mature
technology. Two parts can be distinguished in a RAC
server (Fig. 2). The processes and memory structures that
are distributed across the nodes in the server are called
Oracle instances. The data structures stored in files form
the Oracle database. The instances are connected between
themselves and with the database with a high speed
network.

When we started to test in a server with 2 nodes we saw
that although a higher insertion rate could be achieved, it
was far from double the rate with a single node.
Analyzing the Oracle statistics reports we could see that
the nodes were taking exclusive locks in the history tables
for long periods, so they were interfering with each other.
A first solution was to reduce the time the locks lasted by
using a technique called direct path for inserting into the
Oracle tables. With this method, while insertion takes
place any integrity constraints are disabled and indexes
are only updated once the insertion finishes. Direct path
gave a reasonable result for the 2 node server and we
could handle around 50 clients with a rate of 1000
changes/s.

The next step was to move to a server that could handle
the requirements set by our users. We moved to a 6 node

PVSS System 150

PVSS System 2

PVSS System 1

Event
Manager

Data
Manager

Archive
Manager

User
Interface

Driver

…

Driver

Oracle Real Application
Cluster (RAC) Server

Instance 6

…
Instance 2

Database

Instance 1

Simulation
file

Simulation
file

…

Figure 2. PVSS clients connected to the Oracle server.

ROPA02 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Data and Information Management

518

server and we had 150 PVSS clients with a rate of 1000
changes/s. The system was not scaling properly because
the nodes had to communicate a lot to keep the coherency
of the tables they were inserting into. Then we took
advantage of the fact that each client inserts its own
identifier in the tables to partition them according to that
identifier. In this way each client inserts data in its own
partition and they don’t interfere with each other. This
finally made the application scalable on the server side
(Fig. 3). Now it is possible to add more nodes to the
server if a higher performance is required. The
measurements after these changes are presented in the
next paragraph.

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6

RAC nodes

PV
SS

 S
ys

te
m

s

Figure 3. Scalability of the RAC server.

CURRENT PERFORMANCE
A system similar to the one in the final control system

was setup to measure the performance that could be
achieved with the above changes. On the one hand, there
was a PVSS distributed system with 150 computers
running Scientific Linux CERN 3 (SLC 3), 3GHz CPUs
and 2 GBytes of memory. Each system generated a load
of 1000 value changes per second. On the other hand,
there was an Oracle RAC server with 6 nodes. Each node
was an Intel Xeon processor with 4 GBytes of memory
running Red Hat Enterprise Linux 4. The version of
Oracle was 10g release 2. The server was able to handle
the load. However, when the current tablespace (i.e. the
files where Oracle stores data) got full, and a new one had
to be created the server slowed down. This seems to be a
limitation of Oracle. A very straight forward solution is to
precreate the tablespaces or create them with a
background job well before they are needed. We are
currently implementing this solution.

NEXT STEPS
In addition to the precreation of tablespaces, we plan to

include the possibility to buffer data to the local disk

when the database server is not reachable. Once the server
becomes available the locally stored data would be sent to
it.

The work described so far in this paper covers the
insertion of value changes. As explained before, the
alarms are also stored by the archiver. The requirements
for the alarms are much lower. Although avalanches of a
few minutes have to be considered, there shouldn’t be a
continuous rate as it would be impossible to diagnose the
source of the problem and the alarms would eventually be
filtered or disabled. We plan to go through a similar
optimization process as we did for the values.

CONCLUSIONS
The basic PVSS database archiving has been optimized

and tailored specifically for Oracle RAC servers. This
covers the requirements set by the LHC experiments. The
changes made to the tool have been done in collaboration
with ETM and they are now part of the standard PVSS
versions. This has the advantage that CERN doesn’t have
to maintain it during the next years.

Work continues to solve some minor problems left with
the insertion of values and to start with the optimizations
of the alarms.

ACKNOWLEDGEMENTS
The work presented in this paper has been the fruit of a

collaboration between several CERN groups
(Experiments, Controls and Databases) and ETM, the
company that produces PVSS. Mainly the following
people have been involved from CERN: Eric Grancher,
Luca Canali, Nilo Segura, Pior Golonka and Svetozar
Kapusta; and from ETM: Ronald Putz and Ewald Sperrer.
The author would like to thank also all the other people
that have contributed in one way or another to this work.

REFERENCES
[1] PVSS made by ETM professional control AG,

Eisenstadt, Austria, http://www.pvss.com.
[2] The Joint COntrols Project (JCOP) Framework.

http://cern.ch/itcobe/Projects/Framework
[3] E. Grancher. Oracle RAC (Real Application Cluster)

application scalability, experience with PVSS and
methodology. Computing in High Energy Physics.
Victoria BC, Canada, September 2007.

[4] Oracle Real Application Cluster (RAC) technology.
http://oracle.com/technology/products/database/clust
ering.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA ROPA02

Data and Information Management

519

