
CONTROL SYSTEM STUDIO APPLICATIONS*

K. Kasemir, ORNL, Oak Ridge, TN 37831, U.S.A.

Abstract
Control System Studio (CSS) is an effort to implement

control-system related applications, primarily targeting
the operator interface. It is based on current software
technologies (Java, Eclipse), with a special emphasis on
interoperability. We present initial versions of several
CSS applications, their features, and how the Eclipse and
CSS frameworks helped or complicated their
development.

PURPOSE
Many control system (CS) user interface (UI) tools

share the same problems: Implemented at different sites,
their look and feel varies. Use of menus, configuration
panels, or online help is inconsistent. Data exchange is
limited to manual copy and paste of process variable (PV)
names, often via gestures unique to the application.

They are often restricted to the X11 window system,
and suffer from dwindling support, because programmers
now prefer portable UI frameworks with better
development environments. Finally, most UI tools are
locked to a particular control system, while many sites
now need multi-protocol support.

CSS is an effort to create applications with a consistent,
modern look and feel in an integrated environment, and
interfacing to multiple control systems [1].

ECLIPSE
Instead of starting from scratch, CSS builds on Eclipse,

a modern framework for UI applications [2]. Eclipse
offers graphical UI elements and also defines their
behavior. Based on Java technology [3], it supports
multiple operating systems. The Eclipse “Plugin” and
“Extension Point” mechanisms aid in the organization and
deployment of software modules.

The CSS “core” plugins define control-system data
types for front-end computers (FEC), PV names, and live
or archived data samples. There are APIs for accessing
multiple CS network protocols, and guidelines for
integrating the menu, online help, and preferences pages
of control-system related applications [4].

PROBE
The CSS Probe tool displays the current value of a PV.

It runs on Microsoft Windows, Mac OS X, and Linux,
using their native widgets for buttons, text boxes, etc., and
has several usability advantages over its namesake
application from the Experimental Physics and Industrial
Control System (EPICS) toolkit [5].

General UI Behavior
The CSS Probe layout adjusts to the window size.

When restarted, the previous window location is restored.
The PV name field offers a drop-down list of recently
entered names. Eclipse supports localization and Probe
includes German, Chinese, and English translations,
depending on the locale of the operating system.

Figure 1: Snapshot of CSS Probe in German locale.

Preference Pages
CSS tools present their settings via the Eclipse

preference UI. Probe itself currently needs no preferences,
but it uses a communication plugin to obtain PV samples.
If the EPICS plugin is loaded, Probe utilizes the EPICS
network protocol, unaware of the required subnet
addresses and other settings. The EPICS plugin itself adds
the necessary preference pages. The user can
consequently inspect and configure the network protocols
that Probe uses via a convenient graphical UI.

In addition to the preference page UI, system
administrators can define site-specific defaults for CSS
and Eclipse settings on various levels.

Online Help
CSS plugins for tools and support libraries contribute to

the Eclipse online help system. This is especially useful
for libraries: when libraries are added, the user
automatically sees the corresponding online help and
preference pages without changes to the tools that use
them.

Version Info
Previous UI applications had inconsistent support for

version information. In Eclipse, everything is packaged in
one or more plugins, each of which has a version number.
There is a common UI, accessible from the ‘Help’ menu,
which lists all plugins with version detail and optional
legal information.

__

* Work supported by Oak Ridge National Laboratory for UT-Battelle,
LLC, under contract DE-AC05-00OR22725 for the U.S. Department of
Energy.

ROPB02 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Operational Tools

692

EPICS PV TREE
This application displays a hierarchical view of EPICS

record input links with current values and alarm states.
While limited to a specific control system, it nicely
demonstrates the integration with other CSS tools.

Figure 2: PV Tree with context menu.

CSS Context Menus
When opening the context menu on a PV or FEC name

in a CSS application, it includes a list of other CSS tools
that handle this type of item. In the example of Fig. 2,
clicking the right mouse button on a PV in the tree opened
a context menu with tree navigation options as well as a
“CSS” submenu that lists other CSS utilities for PVs.
When selecting “Probe”, a new Probe instance starts to
display the current value of the selected PV.

This offers a previously hard to achieve integration
between control system applications. Users no longer
need to be aware of all the other PV-related tools, know
the specifics of how to start them and how to transfer a
PV name into them, because context menus automate this.

Moreover, users can select multiple PVs at the same
time, and use the context menu to send them to a new
instance of the Data Browser described later on. Probe, on
the other hand, would appear disabled in the context
menu because it was not designed to handle more than
one PV.

As a technical detail, this is implemented via Eclipse
Object Contributions. When a new PV-related tool is
added to CSS, there is no need to recompile or
reconfigure existing tools. The new tool automatically
appears in the respective context menus. Eclipse provides
this powerful Object Contribution mechanism, and CSS
defines data types to attach context menus to PVs, FECs,
archive data sources and sample sequences.

NAMESPACE BROWSER, ALARM TREE,
LOG VIEWER

The Namespace Browser interactively locates PV
names on a database server. The Alarm Tree and Log
Viewer are part of a system for handling control system
alarm messages, which is somewhat specific to the setup

at DESY (Hamburg, Germany). Space limitations prevent
a more detailed description in this context.

The important point, however, is that one can develop
CSS plugins which are specific to a certain site or CS, and
still benefit from full integration with other CSS tools.
After obtaining a PV name from the Namespace browser,
the context menu leads to other CSS tools. At an EPICS
site, this includes the PV Tree. At other sites, it could
include a program to display PV configuration detail from
a local relational database.

Site-specific tools no longer need to be standalone,
oddball applications without preferences or online help. If
your application handles PVs, it can easily send those to
other CSS tools. More importantly, other CSS tools can
now send PVs to your tool.

DATA BROWSER
The Data Browser is a generic CSS tool that combines

Strip Tool and Archive Viewer functionality. It can
display live samples as well as archived data in a plot, or
export the data to files. Based on plugins for archive data
sources, it can currently interface to the Channel
Archiver, the DESY AAPI server, and the EPICS Archive
Record. Each PV may have multiple data sources: for
example, the Data Browser can merge samples from an
archive record for recent history with those from a mid-
term and long-term archive.

Figure 3: Data Browser Example.

The Data Browser was designed with usability in mind.
Compared to existing EPICS tools, changes to axis
assignments, colors, or data ranges require fewer mouse
clicks or keystrokes. When a PV name is received via
drag-and-drop onto the plot, the PV is added with its own
new vertical axis; when dropped onto an existing axis, it
is added to that axis.

The plot can show Markers for selected samples, which
indicate the data source: live, archive, ... If supported by
the data server, the sample Quality (original, interpolated)
is used to display a reduced sample count with minimum,
maximum and average values while viewing a broad time
range, automatically switching to the original samples
when zooming in close enough.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA ROPB02

Operational Tools

693

During zoom or pan operations, the graph redraws
quickly with the available data, while background tasks
request new samples and trigger a redraw on the arrival of
data. The standard Eclipse “Progress” view can optionally
be used to monitor or abort ongoing background tasks.

When opening multiple instances of the Data Browser,
they share the same view panels to configure the plot,
explore individual samples, or export data. For example,
the “Data Browser Config View” that is visible in the
lower-right section of Fig. 3 always reflects the
configuration of the most recently selected Data Browser
instance.

Such shared views are common in modern programs.
Text editors, for example, can open multiple documents
that share the same formatting palette. Older control
system applications, however, were usually written
without a framework to support these ideas, thus wasting
screen space with per-instance views, which often even
come in the form of modal and fixed-size dialogs.

SYNOPTIC DISPLAY
The Synoptic Display is a graphical editor for operator

interface screens. It was designed to support multiple
control systems, and offer widgets where every property
can be dynamic. A label widget can display a static text
like “Pressure”, but it can also be configured with a text
property that reflects the current value of a PV, for
example one that contains a pressure reading. Similarly,
the position, size, color, or font of a widget can update in
response to PV changes, allowing for very powerful
display options.

Figure 4: Synoptic Display Example.

INTEGRATION
Eclipse offers numerous ways for sites to package,

brand, and deploy CSS as well as other plugins as what is
then called a Product.

Packaging and Deployment
A minimal CSS product can be provided that allows

users to download the desired tool plugins. You can also
prepackage desired components for your site as one

product. Updates can be provided via manual or
automated download.

Startup Choices, “Splash” and “Welcome”
Custom product startup code can provide an initial

login dialog for authentication, a workspace selector, or
fulfill other site-specific requirements.

Product configuration also includes a “Splash” screen
to display, for example, site-specific legal information,
and an initial “Welcome” help screen to guide new users
through their first steps.

ISSUES
There is no free lunch. The high usability of CSS

comes at the expense of added work for the application
developer, and the person who handles the integration and
deployment. Collaboration amongst different sites,
targeting different control systems and allowing for data
exchange, is much more time consuming than writing a
standalone application with a limited feature set. The CSS
code base continually evolves as we learn about better
solutions for data exchange, the use of the Eclipse
Workspace, and the quirks of the control systems we
attempt to interface.

 Instead of designing everything from scratch, CSS
greatly benefits from the Eclipse ecosystem, but this alone
entails a steep learning curve. Fortunately, a worldwide
open-source community supports Eclipse. Numerous
books and newsgroups can help when problems are
encountered.

CONCLUSION
CSS adds control system APIs and guidelines to

Eclipse. The results are modern, portable control system
tools, which are not built on a site-specific library, but on
a proven open-source framework.

There are already several general-purpose CSS
applications, and you can add site-specific applications,
which are then fully integrated: common look, behavior
and data exchange. CSS can be packaged and deployed as
needed.

Acknowledgements
Kenneth Evans (ANL) wrote the first “Probe” for

Eclipse. Xiaosong Geng (ORNL) added Chinese
translations, and worked on the Data Browser formula
package. Jan Hatje (DESY) provided Fig. 4 and DESY
application detail. See http://css.desy.de for more.

REFERENCES
[1] M. Clausen and G. Tkacik, “EPICS Office,”

ICALEPCS’05, Geneva, Oct. 2005.
[2] Eclipse open source community home page,

http://www.eclipse.org.
[3] Java technology home page, http://java.sun.com.
[4] J. Hatje, "Control System Studio", ICALEPCS’07,

Knoxville, Oct. 2007.
[5] EPICS home page, http://www.aps.anl.gov/epics.

ROPB02 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Operational Tools

694

