
SYSTEMATIC PRODUCTION OF BEAMLINE AND OTHER TURNKEY 
CONTROL SYSTEMS 

Gasper Pajor*, Andrej Kosrmlj, Igor Verstovsek, Klemen Zagar, Rok Sabjan (Cosylab, Ljubljana)

Abstract 
Turn-key oriented accelerator control system 

production is often quite complex and challenging. It 
involves software development as well as substantial 
project management effort and, almost always, an on-
site installation. Most of the labs have developed 
solutions that to some extent support such processes, 
but are tailored to the lab's particular needs and 
environment. We could not recycle these solutions, as 
we had to keep the choices open for defining the 
naming convention, choosing the operating system, 
platform and even the control system. 
Based on our experience with control systems, we have 
defined a complete set of processes that prescribe the 
highest level of quality and efficiency in all the project 
segments. To implement these processes, we have 
developed a number of tools for composing, 
configuring and deploying the control system software. 
Use of these tools enforces strict version control and 
traceability, enables centralized configuration of the 
system and largely reduces possibility of human errors. 
These tools also enable us to re-use well tested building 
blocks, leaving us more time for system-wide quality 
assurance. 

BACKGROUND 
The goals, which later transform into benefits, of the 

software versioning and deployment control process 
are fairly easy to identify. The process has to be strict 
where required yet user-friendly and flexible to 
accommodate various common practices. The result of 
such process is well defined and repeatable 
conglomerate of existing elements and particular 
configurations. 

It is less clear, however, how to implement such a 
process as there are many open parameters to consider. 
We have identified the following steps: 
• definition of  the atomic building block 

(component), 
• enumeration and configuration of the components 

comprising the control system, 
• assembly of components into deployable 

collection of files. 
If the interfaces are defined well enough, the above 

steps can be broken down in three separate processes. 
Each process can then have its own specialized tools 
and clearly defined scope. 

SQL Database as Interface 
We decided to utilize the SQL database as the 

interface between stages in the process and it proved to 

be a good choice. It forced us to design the interfaces 
and double check them at the very beginning to avoid 
costly database changes later on. As a result the 
interfaces have stayed the same for almost two years 
now and so far there has been no need for changing 
them. 

There is another point to choosing the SQL database 
as an interface; practically every programming 
language has a library for communication with a 
database, so we have not limited the choice of 
implementation language of our tools with the choice 
of interface. 

Apart from the role as an interface, the SQL database 
also acts as a central information repository, storing the 
data and providing the foundation of repeatability and 
traceability. 

GENERIC COMPONENTS 
The component as we defined it is a recyclable 

building block of a control system.The element could 
be anything from a bulk solution for particular 
subsystem to a single meaningful line that needs to be 
inserted somewhere. Needless to say, most of the 
components are somewhere in between.  

What makes the components recyclable is the 
description of configurable parameters and 
mechanisms to adapt these parameters for each 
particular use. Apart from the usual meta information 
such as name, creator, version etc. we have defined 
groups of name-value-comment triplets. Tags are also 
associated with each group of triplets that define how 
the data contained within the group should be 
interpreted. All the meta information is initially entered 
in an xml file.  

A dedicated tool, the Orchestrator, is used to 
automatically check the component for consistency 
before its files are committed to CVS and its meta 
information from the xml file is entered into the SQL 
database. At the same time the Orchestrator tags the 
CVS with appropriate version, which it also stores in 
the database. With this the Orchestrator guarantees 
synchronization of component versions in the CVS 
with the corresponding component information in the 
database. This consequently means easy extraction of 
particular component’s files later in the process. 

CONFIGURATION 
The idea of configuration is based on the “classical” 

signal list that enumerates the relevant signals brought 
to control system and their properties, alarm limits etc. 
We decided to base our Signal List tool on Microsoft 
Excel, mainly to get all the spreadsheet functionality 
and flexibility out of the box. The built-in Visual Basic 

____________________________________________ 

*gasper.pajor@cosylab.com 

RPPB14 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Engineering Processes, Project Management Collaboration

632



for Applications, although somewhat peculiar at 
moments, provided all the programming strength we 
needed to implement the logic behind the spreadsheet 
cells. 

The Signal List offers the available components to 
the user, lets the user configure the components’ 
parameters and finally enables the user to store the 
current configuration to a Configuration database. 

The palette of available components (and their 
versions, of course), is fetched from the Components 
database. Once added to the Signal List, the 
component is represented by a section of cells on the 
Excel sheet. User can then change the default 
parameters by editing respective cells. 

When the users finish with the configuration, they 
can export the data from the Signal List to 
Configuration Database. The exported data contains 
information about components and their attributes, 
which is all that is required for composing the 
deployable collection of files. 

ASSEMBLY OF THE DEPLOYABLE 
FILE COLLECTION 

The next stage of the process is the joining of 
components’ files from the CVS and the configuration 
from the Configuration Database into a file system, 
ready to be deployed. To illustrate its function we call 
the tool that performs this task the Weldor.  

Weldor can be seen as a script that takes a single 
parameter as its input: the “build ID” i.e. the 
configuration id number in the Configuration 
Database. The rest of the welding is performed 
automatically in the following five steps: 
• Fetching data from Configuration Database  
• Fetching the components’ files from CVS 
• Applying naming convention  
• Welding  
• Invoking the “next stage” 
 

Figure 1:  Generator toolset and flow diagram.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA RPPB14

Engineering Processes, Project Management Collaboration

633



Fetching the data from the Configuration Database 
is based on the build ID. The data then fills Weldor’s 
data model, which is available in all the next steps. 

For each component the exact version (tag) of its 
files is checked out from the CVS and placed into 
appropriate local directory.  

The next step can be seen as somewhat EPICS 
specific, but it could be in fact used in any control 
system. The problem we faced on numerous occasions 
is that almost every lab or site has its own naming 
convention standards. This is even more emphasized in 
control systems with flat variable space, where naming 
convention has to provide clues on where and what the 
variable represents. 

To handle this issue, we decided to introduce generic 
names in the components’ files, which are replaced 
with particular names, formatted and named according 
to the target lab’s naming convention. We implemented 
this procedure with extensive use of regular 
expressions.  

An example for EPICS channel name transformation 
for Labs A and B would be: 

Name in generic component:  
$(DEVICE)$(VOLTAGE)$(GET) 

Transformed name for Lab A:  
$(DEVICE):VOLT_MONITOR 

In instance for Lab B:  
$(DEVICE)::Get-Voltage 

 
When all the naming is handled, the welding takes 

place, when the data from Configuration Database and 
the files are properly combined. A separate directory is 
created and filled with appropriate components’ files 
for each IOC. Then the groups of name-value-comment 
are applied to the files, according to each group’s 
specification. The simplest group handler types are 
find/replace, insert and similar, whereas the more 
complex include the complete logic for accumulating 
the data and later generating code for low-level 
controllers (e.g. DeltaTau PMAC [1]).  

The result of this step are the IOC directories 
prepared to be compiled and deployed. The files that 
are not IOC specific (e.g. GUI applications, 
documentation etc.) are stored separately. 

The “next stage” step is specific for each target 
platform and can include anything from a simple 
cleanup to preparation and execution of compiling and 
deploying. 

Although Weldor could have been programmed in a 
scripting language we have decided to do it in Java. 
This decision was especially welcome when the need 
for more advanced handlers emerged. The object 
oriented approach also provided foundations for easy 
switching to alternative implementations of each step. 

BENEFITS 
Although the development cycle is usually longer 

and transforming existing piece of software into 

recyclable form takes some time, we have achieved our 
goal and benefits exceed the mentioned drawbacks by 
far.  

The system-wide testing is usually last on the project 
schedule, which often means its scope is reduced by 
the oncoming deadline. The described system provides 
controlled and efficient re-use of the components, 
eliminating the need to test the well-tested units each 
time over. This consequently leaves us more time for 
system-wide testing and quality assurance.  

The process and tools are designed to eliminate 
many possibilities for human errors. The “atomic” 
operation of consistency check, CVS commit, CVS tag 
and new database entry can be set as an obvious 
example. 

FUTURE CONSIDERATIONS 
We have already created some by-products of our 

system, such as the Documentatore tool that performs 
the naming convention routines on Microsoft Word 
documents and the Miner tool that provides database 
analysis such as logical diff-like comparison between 
two build IDs. Both of these tools will probably see 
some improvements. 

We plan to change our version control system from 
CVS to subversion in the near future. That will require 
some alternative implementation of the parts that now 
communicate with CVS.  

Although Excel is a fantastic tool for spreadsheet 
manipulation we have not used its functionality as 
much as we anticipated. This and the fact that other 
tools are much more often used in Linux than in 
Windows is something we might have to consider. For 
now, we use VMware with Windows running as a 
virtual system inside Linux.  

CONCLUSION 
We have used this system on all of our larger 

integration projects since the toolset has been 
developed. Some of these projects have already been 
successfully finished while others are well on their way 
there. 

The described tools and processes fit well with our 
(also in-house developed) project management toolset 
CPM [2]. This setup, together with accumulated know-
how, allows us to provide control system integration 
and turn-key control system solutions of highest 
quality. 

REFERENCES 
[1] Delta Tau Data Systems, Inc.  
 http://www.deltatau.com/ 
[2] I. Verstovsek et al.: “Management System 

Tailored to Research Institutes”, ICALEPCS 2007 
 

 
 

RPPB14 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Engineering Processes, Project Management Collaboration

634


