
JAVA SWING-BASED PLOTTING PACKAGE RESIDING WITHIN XAL*

A. Shishlo#, T. Pelaia, ORNL, Oak Ridge, TN 37831, U.S.A.
P. Chu, SLAC, Menlo Park, CA 94025, U.S.A.

Abstract
A data plotting package residing in the XAL tools set is

presented. This package is based on Java SWING, and
therefore it has the same portability as Java itself. The
data types for charts, bar-charts, and color-surface plots
are described. The algorithms, performance, interactive
capabilities, limitations, and the best usage practices of
this plotting package are discussed.

INTRODUCTION
Development of the plotting package started at the early

stages of XAL [1] as a research project to study how fast
data plotting can be updated. Later, interactive features of
the package were found useful in several applications.
This package is not intended to completely replace
existing powerful plotting packages like JClass, but it is
sufficient for instances where simple charts and color-
surface plotting is required.

STRUCTURE OF THE PACKAGE
In terms of the Model-view-controller (MVC) pattern,

the XAL internal plotting package is simplified, and it has
only two components. The view and controller are
combined together, and they are implemented in the
FunctionGraphsJPanel class, which does not have any
subclasses. There are four major types of data (Model
components). Two are related to 2D chart plotting. The
third can be used for bar-charts, and the last one for color-
surface 3D plotting. The bar-charts plotting package is a
separate package inside the general plotting package, and
it provides necessary wrapping around base plotting
classes.

DATA TYPES FOR CHARTS AND 3D
The two basic data types for 2D charts plotting are

BasicGraphData (and its subclass CubicSplineGraphData)
and CurveData. There are 4 subclasses for 3D color-
surface data. The individual Data classes are discussed
below.

BasicGraphData class
The BasicGraphData class represents data as a table for

a function with possible errors for function values. It is a
container for a set of triplets (x, y, error of y) ordered by x
values. There should not be duplicated x points in any
instance of this class. In this class linear interpolation
between different x values is used, and a spline from the
CubicSplineGraphData subclass is employed. The data
points can be added to the container in different ways:

void addPoint(double x, double y)
void addPoint(double x, double y, double y_err)
void addPoint(double[] x, double[] y)
void addPoint(double[] x, double[] y, double[] y_err).

There are also a handful of methods such as
“updatePoint” and “updateValues” which handle
replacement of one or all data points.

The removeAllPoints() method will remove all data
points, and the removePoint(int index) method removes
only one data point with a particular index.

When a user adds or removes data from the container,
by default it will notify all graph containers (the
FunctionGraphsJPanel class instances) where this data has
been added. It will also initiate a graphics repainting on
all panels. This could slow down the painting if there are
many data sets frequently calling for this repainting. To
avoid this situation a user can switch off this trigger by
calling setImmediateContainerUpdate(boolean param)
with a “false” argument. In this case the repainting should
be called directly for the FunctionGraphsJPanel class
instance at an appropriate moment.

A user can set up different properties of the data that
will affect its appearance on the graph panel. These
properties are color, point size, shape, filling pattern
switch, connecting line thickness, and name of the data
that will appear on a legend. It is possible to switch off
and on the drawings for the connecting lines or data
points. The data container also has a dictionary inside, and
a user can store arbitrary information related to this data
set.

The example of a graphical representation of this data
container is shown on Fig. 1.

Figure 1: Example of a BasicGraphData representation on
the FunctionGraphsJPanel class instance.

There is one additional subclass of the BasicGraphData
named the UnwrappedGeneratorGraphData class. The
addPoint method of this class is overridden to produce

__

* ORNL is managed by UT-Battelle, LLC, for the U.S. Department of
Energy under contract DEAC05-00OR22725
#shishlo@ornl.gov

TPPA08 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

102

smooth data in cases of phase scans when original data
can jump by ± π values.

The BasicGraphData class should be used when the
amount of the data does not exceed about a thousand
points. In this case the whole package demonstrates a
good performance with about 20-40 Hz update frequency.
If the number of points count is in the thousands, and the
number of data sets is hundreds, it is better to use the
lightweight CurveData class.

CurveData class
The CurveData class represents a set of (x, y) pairs. On

the graphics panel the adjacent points will be connected
by straight lines. Each time when the user modifies data,
the findMinMax() method should be called to calculate
extremes of the data. If a user wants a closed contour the
last pair should be the same as the first pair. A user can
specify a color, thickness, and a stroke width of the line.
These data are not presented on the legend panel, and
therefore they do not have names. The simplicity of this
data container results in the high performance of plotting.

3D Color Surface Data
There are four subclasses of the abstract

ColorSurfaceData class representing different algorithms
of interpolation of the value field defined on a two
dimensional rectangular grid. The ColorSurfaceData class
has two abstract methods:

getValue(double x, double y)
addValue(double x, double y, double value).
The first method returns an extrapolated value at the

specific position on the plane. The position is defined by x
and y coordinates. The second method bins the value
according the same extrapolation scheme. The
implementations of this scheme are:

 “smooth” uses 9-points smooth interpolation. It is used
by default.

"linear" is a linear interpolation inside 4-points.
"point like" means no interpolation, it uses the nearest

point in the grid.
"black&white" means no interpolation, it uses the

nearest point in the grid, and the value can be 0 or 1 only.
All 3D color surface data types are produced by the

Data3DFactory class by using the static method
getData3D, which returns the ColorSurfaceData instance.

Only one instance of the ColorSurfaceData class can be
registered inside the FunctionGraphsJPanel class instance,
but it can be combined with CurveData and
BasicGraphData instances (actually, combination with
BasicGraphData does not make any sense).

The color scheme according to which the 3D data are
presented is defined by the ColorGenerator interface
method “Color getColor(double value)”. This method
maps the color and a value between 0 and 1. By default all
3D data classes have the RainbowColorGenerator
implementation of the ColorGenerator interface. Users
can define their own implementation and set it to the data
class instance.

The presentation of the color surface data are defined
by the size of the grid on the graphics panel. These sizes
could be bigger than the sizes of the data grid. There is no
allocation memory involved for this graphics grid, but the
plotting time will increase proportional to the total size of
this grid. The setScreenResolution(int nX, int nY) method
is used to define the size of the graphics grid.

At this moment there is no legend available for the
color scheme, but the screen reader can be used to see
numerical values at arbitrary points on the graphics
surface.

An example of the color surface data plotting with the
100x100 graphics area resolution is shown on Fig. 2.

Figure 2: Example of a ColorSurfaceData representation
on the FunctionGraphsJPanel class instance. The
RainbowColorGenerator as a color scheme is used. The
3D color surface plot is combined with CurveData
instances.

VIEW AND CONTROLLER
The FunctionGraphsJPanel class is a subclass of JPanel

and implements two interfaces to provide interactive
capabilities: MouseListener and MouseMotionListener..
All plotting takes place on the Graphics object of the
FunctionGraphsJPanel class instance.

The three text fields clearly visible on the graphics
panel (see Fig. 1, 2) are a graph title and the horizontal
and vertical axes titles. A user can specify texts, fonts, and
colors of the titles, and backgrounds of the graph and
surrounding (border) region. The grid lines (Fig. 1) have
separate colors and visibility switches (setGridLineColor,
setGridLinesVisibleX, setGridLinesVisibleY).

The performance of the drawing on the graphics panel
is not usually an issue by itself, but a user can switch “on”
and “off” drawing on an “off-screen image” by using the
setOffScreenImageDrawing method. The drawing on the
off-screen image is slightly slower, but it helps to get rid
of some artifacts related to the vertical layout of text
regions.

Data Registration
To plot on the graphics panel of the

FunctionGraphsJPanel class instance the data should be
registered with this instance by using one the following
methods:

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA08

Software Technology

103

• addGraphData(BasicGraphData bgd)
• addCurveData(CurveData cd)
• setColorSurfaceData(ColorSurfaceData csd).
During the registration the data will be immediately

plotted. There are also methods to replace or add a
collection of a data set packed in a Vector. As it was
pointed out before, there can be only one
ColorSurfaceData instance registered.

Zoom
The plotting region allows unlimited levels of zooming.

The zoom is performed by a “press-drag-release”
sequence using the left mouse button. A double click will
return the state to the previous level of zooming.

Data Reader
The method getClickedPointObject() will return the

ClickedPoint auxiliary class instance which has three
public fields: xValueText, yValueText, and zValueText.
They are JTextField instances and can be placed
anywhere. After the left mouse button click, these fields
will show the x, y, and z value for the mouse cursor
position.

Axes Markers and Scales Control
The package includes a special class to provide

interactive control of the chart axes. This control was
created to provide a uniform GUI for different plotting
packages that exist now and can be added in the future. To
get this control the FunctionGraphsJPanel instance should
be registered for this by calling,

SimpleChartPopMenu.addPopupMenuTo(chart).
This class resides in the gov.sns.tools.apputils XAL
package.

Interactive Modes
There are four interactive modes for

FunctionGraphsJPanel. The switchers (JRadioButton) can
be placed at the left upper corner of the panel (see Fig. 1):

• setLegendButtonVisible(boolean)
• setChooseModeButtonVisible(boolean)
• setHorLinesButtonVisible(boolean)
• setVerLinesButtonVisible(boolean).
The first button makes the legend visible. The position

of the legend is arbitrary, and it can be dragged to any
place. The legend can be used to select the graph data.
Remember that only BasicGraphData instances are shown
on the legend.

The second button switches the graph panel in the
graph data selection (choosing) mode. In this mode all
graphs (BasicGraphData instances) have the black color
except the one that has been selected by clicking on it
(simultaneously the graph data point will be selected).
The FunctionGraphsJPanel has a method to get the
reference to this data (getGraphChosenIndex, and
getPointChosenIndex).

The last two buttons make the tips of the vertical and
horizontal lines visible, and a user can drag these lines
with the mouse. These lines can be used to show the

specific values (the limits of analysis, extremum position
etc.).

GRAPH DATA OPERATIONS
To perform some operations with data, the plotting

package includes a collection of static methods in the
GraphDataOperations class. There are several groups of
the graph operations.

The first is related to finding the intersections of the
plots. It includes collections of findIntersectionX,
findIntersectionY, findIntersection methods with different
input parameters to find intersections for two or more
plots in regions limited in both or only in one direction
etc.

The getDataInsideRectangle method is used when a
user limits the scope of the graphs operations by certain
limits in x and y directions.

The polynomialFit methods collection is used to create
polynomial fits for data.

The unwrapData method performs the same operations
that UnwrappedGeneratorGraphData class does. It
produces smooth data in cases of phase scans when
original data can jump by ±π values.

BAR-CHARTS
To handle the bar-charts there is a “barchart” sub-

package. It includes BarChart and BarColumnColor class,
and BarColumn interface. The BarChart class is a wrapper
around the FunctionGraphsJPanel class that creates set of
CurveData instances to show the data defined by a Vector
of BarColumn instances. The user has to implement the
BarColumn interface to use this bar-chart plotting. An
example of the bar-chart is shown on Fig. 3.

Figure 3: Example of a bar-chart plotting.

CONCLUSIONS
Despite the simplicity of the plotting package residing

inside XAL, it is capable of satisfying basic demands
from XAL applications and provides a satisfactory level
of interactivity.

REFERENCES
[1] XAL,http://neutrons.ornl.gov/APGroup/appProg /xal/xal.htm

TPPA08 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

104

