
HIGH-LEVEL APPLICATION FRAMEWORK FOR LCLS*
P. Chu#, S. Chevtsov, D. Fairley, C. Larrieu, J. Rock, D. Rogind, G. White, M. Zelazny, Stanford

Linear Accelerator Center, Menlo Park, CA 94025, USA

Abstract
A framework for high level accelerator application

software is being developed for the Linac Coherent Light
Source (LCLS). The framework is based on plug-in
technology developed by an open source project, Eclipse.
Many existing functionalities provided by Eclipse are
available to high-level applications written within this
framework. The framework also contains static data
storage configuration and dynamic data connectivity.
Because the framework is Eclipse-based, it is highly
compatible with any other Eclipse plug-ins. The entire
infrastructure of the software framework will be
presented. Planned applications and plug-ins based on the
framework are also presented.

INTRODUCTION
LCLS is a hard x-ray laser light source which will use

the last kilometer of the existing SLAC linear accelerator.
A software suite, SEAL (SLAC Eclipse Accelerator Lab),
is under development for the LCLS accelerator physics
modeling and integration operation. The technology used
for the framework is based on a Java open source project,
Eclipse [1]. Eclipse is known as a Java IDE (Integrated
Development Environment) but can also be a platform for
hosting other functions. Eclipse is built with a plug-in
based architecture which can easily integrate any
compatible tools or widgets within the platform. The
Eclipse component plug-in model provides the robustness
and portability for applications built on “Rich Client
Platform” (RCP). Also, there are many Java based
accelerator physics packages available, such as XAL
[2][3][4], which can be easily converted to an Eclipse
plug-in. In addition to the SEAL suite, available XAL
applications and Matlab scripts are also included in the
LCLS high-level application framework.

FRAMEWORK OVERVIEW
An overview for the SEAL suite structure is shown in

Fig.1. The three dashed line blocks within an Eclipse
“product” represent the major component categories for
the SEAL suite. Within the framework, physics modeling
capability is provided by XAL online model, general-
purpose EPICS tools are provided by the Control System
Studio (CSS) [5][6][7], and any useful utility tools can be
included from third party providers. Note that there may
be overlaps among the three categories. The software
framework is a desktop suite type of application which
packages many plug-ins within an Eclipse product. One
of the many advantages of a desktop suite over individual

window applications is that the components within the
desktop applications reside within the same Java virtual
machine (JVM) and, therefore, can communicate with
each other easily. Also, many components such as Help,
Search, Cut, Copy and Paste are seamlessly integrated
through the Eclipse framework.

Figure 1: Schematic view of SEAL suite.

FRAMEWORK COMPONETS
The SEAL suite can basically integrate any Eclipse

plug-ins as well as any executables. Details for various
categories of the SEAL suite components are explained in
the following subsections. There will be minimal tweaks
for certain components to better fit within the suite.

XAL Toolkit
Accelerator information such as default accelerator

optics and signal names is parsed into SEAL from an
XAL XML file. The XML format follows the XAL
Standard Machine Format (SMF) which is a hierarchical
view of an accelerator.

Because the graphical user interface (GUI) for Eclipse
is built with SWT (Standard Widget Toolkit), the XAL
Swing-based GUI framework is not compatible within the
SEAL framework. In order to use XAL non-GUI tools, a
custom built jar file without the GUI frame is used for
creating an Eclipse plug-in. Each plug-in that needs to
access any XAL class can then include this XAL plug-in
in its dependency list.

Besides the SMF and online model, there are many
other XAL tools such as data plot package, optimizer and
mathematical utility are also included in the XAL plug-in.
Control System Studio

CSS is another Eclipse based application suite for
control systems. The major difference between CSS and
SEAL is that the focus for SEAL is mainly on physics
applications while CSS is aiming toward general control
system support. Nevertheless, some CSS plug-ins can be
included in the SEAL suite and vice versa.

*Work supported by the U.S. Department of Energy under contract
number DE-AC02-76SF00515.
#pchu@slac.stanford.edu

TPPA13 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

114

Plug-in Design and Organization
One of the design goals for the SEAL plug-ins is to re-

use some plug-ins in multiple applications. There will be
a set of base plug-ins which can simply be grouped
together to form an application. For instance, an online
model application can be composed of an accelerator
optics selector plug-in, an online model run control plug-
in and a special data display panel with distance along the
beam line as horizontal axis, while an orbit display
application can use the same data display panel plug-in
and a beam position monitor (BPM) data collection
engine plug-in.

Figure 2: SEAL prototype with the Online Model
perspective. The perspective contains a workspace
navigator displaying the workspace file system (upper
left), a beam line sequence selector (upper middle), an
online model run control (upper right) and an orbit data
plot panel for showing the model run result (bottom).

Figure 3: SEAL with the CSS Data Browser perspective.
The perspective includes Data Browser Archives view

(left), Data Browser Config view (bottom right) and a
blank editor area (upper right).

Application Displayed as Eclipse Perspective
Because the SEAL suite is a desktop application suite

that contains many plug-ins, it is necessary to group
relevant Eclipse Views (panels) in a reasonably arranged
layout to act as an application. Eclipse provides such
predefined layout mechanism called perspective. Figs. 2
and 3 show the same SEAL suite but in different
perspectives, Fig.2 is of the online model perspective and
Fig. 3 is of a CSS perspective for the Spallation Neutron
Source (SNS). With any given perspective, user can still
open or close any view at wish. A “Reset Perspective”
click will bring back the predefined layout.

Data Plotting Package
There are three possibilities under consideration for the

data plot within SEAL:
• XAL plotting package [8] – this is a Swing based

graphical environment which needs the
SWT_AWT bridge in order to work within
SEAL. The drawbacks are a) it loses the native
look-and-feel for Eclipse, and b) it is not 100%
compatible for various operating systems. The
existing obit data plot plug-in is using this
package.

• Matlab data plot utility – this gives the advantage
of using Matlab mathematics tools with data
plots. In particular, we plan to use the Matlab
Java Builder and curve fitting toolbox for math
and plotting/fitting, respectively. However, the
performance and license cost may discourage
this approach.

• Possible new plotting package – an SWT based
scientific data plotting package would be the best
solution.

SEAL Utility Tools
Present SEAL utility tools include the following

utilities:
• Textual display – a general purpose data

tabulating and data displaying tool.
• Java CM Log viewer – Java version of the CM

Log in Eclipse plug-in form.
• Screen snapshot viewer – A screen capture plug-

in which can also be a simple image editor.

Save/Restore Tool
A machine configuration save and restore utility tool is

under development. The first version of the tool is based
on the XAL SCORE application with partial support for
the SLAC non-EPICS control system. Beyond the phase
1 of the project, the tool will be integrated into the SEAL
suite.

Eclipse Workspace
Typically, Eclipse RCP applications preserve some

preferences in a directory structure called workspace. The

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA13

Software Technology

115

workspace concept is similar to the standard Java
preferences. For SEAL, in the workspace there will be
information such as EPICS Channel Access address list,
path or URL to the default XAL accelerator file and the
default layout. The workspace for control room
environment might be different from the one for office
users, so SEAL includes workspace management such
that when used in the control room all features are
identical, but when used in offices SEAL allows persistent
customization.

Software Deployment and Update
Any collection of Eclipse plug-ins can be bundled and

shipped as a product.
There are many ways to update Eclipse based software.

A popular way for software update is to use Eclipse’s
update utility by creating feature plug-ins with update site
information. Alternatively, a standalone plug-in jar file
can simply be copied to the plug-in folder in the SEAL
release package.

Non-Eclipse Executables
Here the non-Eclipse executables are defined as any

programs which are not written within the Eclipse RCP
framework. There are many existing Matlab scripts for
commissioning which can be launched within the SEAL
suite for convenience. An Eclipse workspace is set up for
caching information such as where the executables and
how to run the executables. To run an executable within
the SEAL is simply a mouse click. In addition, SEAL can
also provide possible logging and messaging services for
the executables.

Planned Plug-ins
In addition to the plug-ins already mentioned above,

there is a long list of plug-ins to be developed in the near
future. Highlights of the planned physics plug-ins
include:

• Profile monitor data collection
• Emittance analysis
• Correlation plot (process variable scan)
• Orbit/trajectory correction
• Linac energy management

XAL ADOPTION EXPERIENCE
Because SEAL applications adopt the XAL online

model, it is necessary to follow the XAL SMF for the
LCLS lattice configuration. Typically, an initialization
file in XML format is parsed to construct an accelerator
object for applications to use. A database infrastructure is
set to store necessary data for this XML file and an SQL

script queries the database to generate the XML file on
demand.

LCLS specific beam line devices were added to a
customized XAL SMF collection. LCLS rf cavities with
end focusing effects are one example of such devices.
Even for those LCLS devices already defined in the XAL
SMF, there are some LCLS specific attributes which have
to be included. For the short term plan, an XAL code
snapshot taken from SNS repository in August 2007, is
branched in the LCLS repository and all the LCLS
specific modifications are saved locally.

A number of SNS XAL applications can be adopted
with minimal or even no modification required. Such
applications include knobs, save/compare/restore, one and
two-dimensional scan and general purpose EPICS PV
display applications.

For online model benchmark comparison, we compare
with the LCLS nominal MAD lattice run results.

CONCLUSION
A small set of plug-ins have been created for the SEAL

suite. A simple online model application is built on top of
the available plug-ins. Many Eclipse framework features
are being evaluated.

ACKNOWLEDGEMENTS
The authors would like to thank Dr. K. Kasemir and the

CSS collaboration for valuable Eclipse discussions and
source code access. We would also like to thank the SNS
XAL team for their effort to make XAL more generic. We
appreciate A. Chan and her database group for their
database efforts for the XAL configuration. Many thanks
go to the LCLS Physics, Operation and Controls for
providing support and feedback.

REFERENCES
[1] http://www.eclipse.org.
[2] http://neutrons.ornl.gov/APGroup/appProg/xal/

xal.htm.
[3] J. Galambos et al., “XAL Application Programming

Framework”, ICALEPCS’03.
[4] T. Pelaia et al., “XAL Status”, ICALEPCS’07.
[5] J. Hatje, “Control System Studio (CSS)”,

ICALEPCS’07.
[6] K. Kasemir, “Control System Studio Applications”,

ICALEPCS’07.
[7] M. R. Clausen, “EPICS – Future Plans”,

ICALEPCS’07.
[8] A. Shishlo et al., “Java Swing-Based Plotting

Package Residing within XAL”, ICALEPCS’07.

TPPA13 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

116

