
CANONE – A HIGHLY-INTERACTIVE WEB-BASED CONTROL SYSTEM
INTERFACE

M. Pelko, K. Zagar (Cosylab, Ljubljana), L. Zambon (ELETTRA, Basovizza, Trieste),
 A. J. Green (University of Cambridge, Cambridge)

Abstract
 In the recent years, usability of web applications has

significantly improved, approaching that of rich desktop
applications. Example applications are numerous, e.g.,
many different web applications from Google. The
enabling driver for these developments is the AJAX
(Asynchronous JavaScript and XML) architecture.
Canone, originally a PHP web interface for Tango control
system developed at Elettra, is one of the first attempts of
long-distance interaction with the control system via
Web. Users with suitable privileges can create panels
consisting of various graphical widgets for monitoring
and control of the process variables of the control system
on-line. Recently, Canone was extended to interact with a
control system through an abstract DAL (Data Access
Layer) interface, making it applicable to EPICS and TINE
as well. Also, the latest release of Canone comes with
drag'n'drop functionality for creating the panels, making
the framework even easier to use. This article discusses
the general issues of the web-based interaction with the
control system such as security, usability, network traffic
and scalability, and presents the approach taken by
Canone.

INTRODUCTION
In the world of control system, the task of a web

interface is to extend the environment of a classic control
room to any PC all over the world without the necessity
of installing any particular software.

The challenge of a web interface is to work in a hostile
environment where security is the main concern and
bandwidth limitation may be a severe obstacle.

Canone is a graphical animated web interface which
can interact with most of the particle accelerator control
systems. It was built as the web interface of the Tango
control system [1] but with a well delimited
communication protocol toward the control system. This
part was later substituted by a more generic DAL (Data
Access Library) [2] interface which supports EPICS [3],
TINE [4], IFC etc.

Canone is built mainly in PHP (PHP Hypertext
Processor) [5] and animated with AJAX [6] [7]. The main
characteristic is given by the combination of a client side
graphical library with the AJAX powered animation
machine.

The external appearance is a set of "panels" which are
composed of a certain number of "widgets" (graphical
elements) and some HTML tags. Integrated development
tools to edit panels and administer permissions online at
runtime are included in the distribution.

ARCHITECTURE AND CONNECTION TO
THE CONTROL SYSTEM

A web interface is expected not to interfere heavily
with the core of the control system for both security and
performance reasons. On the other hand it should be
highly interactive.

In order to achieve this Canone separates the web
server (blue boxes in Figure 1) from the control system
network. Web server is responsible for the interaction
with the end client, handling graphical representations
and animations. A Java based socket server (Gateway)
acting as a single client on the control system network
presents the connection between the control system
network and the web server via TCP/IP protocol.

Figure 1: Block diagram of Canone

Web server acts as the client of the gateway, prompting
the gateway when it requires status information (status
request) or when it wants to issue a command to the
control system (command request).

In order to decrease the total number of requests to the
control system, the web server cashes the requests for a
configurable amount of time in a database (SQLite or
MySQL). If multiple clients of the Web server request the
same information within this buffer time, only one request
is issued to the gateway. With a similar mechanism
multiple command requests of the same type are also
filtered.

The installation requires a web server with little more
then a basic LAMP (Linux Apache MySQL PHP)
installation and a machine with the access to the control
system network capable of running a simple Java
application (gateway). The client side requires only a web
browser with JavaScript and pop-ups enabled. Firefox is ___

*miha.pelko@cosylab.com

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA20

Software Technology

129

preferred browser but tests have been done with Internet
Explorer, Opera and Safari.

Canone is originally a solution for controlling Tango
from a web browser. Since January 2007 it can connect to
any of the control systems trough the use of Data Access
Library (DAL). This was achieved by developing a Java
based socket server (gateway) using DAL to connect to
the control system.

 DAL prescribes a consistent set of Java interfaces for
access to the control system's dynamic and configuration
data. At this moment there are three control system
implementation of DAL developed (EPICS, TINE and
IFC).

As Canone requires the list of all the devices and
variables available on the control system and as DAL API
does not provide this (e.g. EPICS control system does not
provide such functionality), this was solved trough the
introduction of the ASCII file, listing the devices and
variables.

GRAPHICS
Canone allows for building and customizing control

panels. A simple panel is composed of a title and a set of
widgets, but the page deployment may be as complex as
allowed by HTML. Tables and external links are
examples of features that can be added.

A panel can be built writing an independent PHP script
which utilizes some of the basic Canone libraries (widget,
front-end, user administration, etc.). Alternatively, a panel
can be easily created and modified using a Canone
integrated tool and then saved as a XML file on the server
side (Figure 2).

Figure 2: Fragment of panel description file.

A specific panel editing tool enables to move or resize
each widget with a drag-and-drop technique. In order to
get an adequate precision the normal background is
substituted with a scaled grid image, the widget that is
being moved or resized is alpha-blended and all
coordinate change can be seen in real time in the
configuration table on the right side of the graphic editor
(Figure 3).

Depending on the browser some offset in coordinates
might be present. In this case the coordinates reported in
the configuration table are different from the real
coordinates by a constant factor; this problem is easily
fixed using the incorporated “Edit offsets” menu option.

Figure 3: Drag-and-drop graphic editor

Widgets
A widget is a graphic element representing either a

variable or a command.
Each widget is contained in its own class which extends

the generic "widget" class. A fundamental attribute of this
class is called "config" and contains all the parameters
that can be customized. For each parameter, a data
structure is composed by an identifier, a type definition,
the default value, a short description and a long
description (intended for the on line help). The
setParam() method allows to set all the parameters with a
single string. Some widgets are implemented as PNG
images and others as tables. In both cases the HTML code
necessary to visualize the widget is returned by the plot()
method.

Each widget of a given panel is associated to a control
system variable or command. A form allows a
customisation of all the widget parameters (Figure 4)
including colours, by means of a selection pop-up. The
bandwidth utilized to transfer the widget initialization has
been significantly reduced utilizing JSON (JavaScript
Object Notation).

Figure 4: an example of Canone panel and widget
configuration table.

ANIMATION AND AJAX
A basic characteristic of a widget is how often it is

refreshed. For most widgets only a small part has to be
changed, as all the graduated scales and graphical
ornaments can remain in background. By transmitting
only the numeric data and not transmitting all the
graphical elements at each refresh, efficiency is highly

TPPA20 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

130

improved. AJAX is a framework which allows the
asynchronous transmission of tiny packets of data in a
highly efficient way.

JavaScript allows the dynamic update of only a fraction
of a web page while all the rest remains unchanged. This
is easy for all widget whose animated part is in text
format, but it is more complex for the fully graphical
widgets. The adopted solution borrows a generic library
by Walter Zorn [8] which utilizes the background colour
of floating DIVs, a HTML feature supported by all
modern browsers. Despite a very smart optimization has
been done to improve the efficiency of the graphical
library, it is important to limit the number of animated
graphical elements.

All background elements are built on the server side by
a PHP routine, sent as an image to the client and never
refreshed.

On the client side, the browser only depicts the
minimum graphical elements right over the background
image through the AJAX mechanism (Figure 5).

Figure 5: Widget animation.

AJAX is also asynchronous, which is very useful
whenever a command is sent (i.e. a button is pressed).
Meanwhile variables can continue being updated on the
page. All this is resolved with a tiny delay and no other
negative side effects such as commands lost or
mishandled.

To save further bandwidth and improve the animation
vividness, a configurable number of interpolated values
between two consecutive readings can be inserted. In this
way, a panel can have a refresh rate of up to 20 frames
per second. The price is a delay in the response.

User Administration
The user authentication process in a web environment

must be robust and cannot assume the loyalty of users at
any time.

In Canone, the access is validated using the information
contained in a database (SQLite or MySQL). Users must
be registered in the system with username and password.
Each user must be part of a user group, permissions are

granted to user groups. In addition, several IP numbers
(and net-masks) may be associated to a user group and
receive the same rights. The rights granted to a user
through its username and password override the ones
associated to the IP number.

Three levels of permissions which can be set are:
• read: only read operations are granted, any write

operation is denied
• operator: both read and write operations are granted
• expert: both read and write operations are granted,

panels can be modified.
A special group called "admin" has permissions to

create and delete users and grant or revoke permissions.
The user administration utility is composed of three

tools:
• access control: grants permissions to user groups

over panels and controlled devices
• users management: creates, searches, modifies and

deletes user accounts
• database: is a generic database graphical client to

change any configuration. Only expert administrators
should use it.

CONCLUSION
The aim of Canone is to compete with any non-web

graphic user interface. By now it already encompasses
most of the functionality of traditional interfaces,
sometimes even surpasses them (e.g. by including user
management system, runtime drag’n’drop panel
generation and customization, …).

The final goal is to make all the traditional GUIs
completely obsolete. Although some important features
are still missing the goal seems to be reachable in few
years. The next important step can be to add a reliable
support to alarms.

The original source code, demos and images can be
downloaded from www.elettra.trieste.it/~tango/Canone.

REFERENCES
[1] L. Zambon, M. Lonza, “Web GUIs for the Tango

control system”, PCaPAC2006, Newport News,
October 2006

[2] I. Kriznar et al., “Beyond Abeans”, ICALEPCS,
Knoxwille, October 2007

[3] http://www.aps.anl.gov/epics/
[4] Piotr Bartkiewicz et al, “TINE as an accelerator

control system at DESY” Meas. Sci. Technol. 18
2379-2386, 2007

[5] http://www.php.net
[6] M. Mahemoff, “AJAX Design Patterns”, O'Reilly,

June 2006
[7] http://www.modernmethod.com/sajax/
[8] http://www.walterzorn.com

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA20

Software Technology

131

