
A SOFTWARE ENGINEERS’ PERSPECTIVE TO APPLICATION
DEVELOPMENT IN MATLAB

Sergei Chevtsov, Michael Zelazny, Greg White, SLAC, Menlo Park, USA

 In this paper, we describe reasons for, and

consequences of, the decision by the LCLS software
development team to create physics applications in
Matlab. The following discussion is neither objective nor
complete, but only offers an overview of possible
obstacles that can be encountered during development of
Matlab software. We hope that due to similarity among
projects at national laboratories around the world, our
experience at SLAC will be useful for fellow application
developers.

INTRODUCTION
In March 2006, our team at SLAC agreed to use Matlab

to develop a high-level applications suite for
commissioning of the LCLS linear accelerator, which was
scheduled for March 2007. In the course of one year, we
had encountered and solved many problems with Matlab
that we would like to illustrate in this paper. As a case
study, we use the application for acquiring, processing,
and managing electron beam images (ImgMan).

Figure 1: ImgMan

ImgMan consists of an image processing library and
three autonomous components with graphical user
interfaces (GUIs). The first component features a GUI for
processing live images and acquiring image datasets from
EPICS IOCs. The second component is an image browser
for managing local datasets of images. The third
component features a GUI for analyzing retrieved images.
The underlying image processing library is used by other
physics applications as well [1].

MAKING THE DECISION
In March 2006, we had Microsoft Visio mock-ups of

how ImgMan was going to look like to the end user.
However, we knew very little about how the
communication with IOCs would work, what data our
physicists wanted to extract from images, and how to
organize our code for reuse. We concentrated on the

following criteria for our decision to develop ImgMan in
Matlab.

Rapid development
After talking to Matlab developers who were mostly

writing scripts for their own use, we expected to
implement the functional requirements in Matlab rather
quickly. However, we had no idea how difficult it would
be to realize the non-functional requirements of a quality
software application, such as: robustness, reusability,
comprehensive error reporting, user preferences, and
online help.

ChannelAccess
Our colleagues at SLAC are authors and maintainers of

labCA, a stable and very simple Matlab client library for
ChannelAccess. We estimated that we could easily
integrate it into ImgMan.

Working with physicists
Overall, the most vocal impulses for using Matlab for

ImgMan came from physicists, because they wanted to
write their own image processing algorithms. We also
expected that the collaboration with physicists would help
us to create user-friendly screens with intuitive labeling.

IDE
Matlab’s integrated development environment (IDE)

was expected to accelerate implementation of ImgMan,
because it provided a code formatter, a debugger, and a
built-in console for running Matlab scripts.

Workshop
In March 2006, we attended a Matlab workshop and

learned about the 24-hour support, the wide deployment
of Matlab scripts in the industry, as well as exhaustive
online help and documentation. We were ready.

CHALLENGES
The issues below were encountered at different times

during our development cycle and are ordered by roughly
how much time was needed to either get accustomed to,
or to work around them. The first issue had the biggest
impact on our project.

Dynamic typing
In Matlab, a variable can be instantiated without

explicitly specifying its type. When we dealt with scalar
values, this led to hardly any problems; some of us even
found that this capability helped during prototyping.
However, ImgMan’s design demanded for image-related
data to be stored in complex structures. When a complex

TPPA25 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

144

structure was improperly used in a script, Matlab could
only report errors (such as a wrong field order or
mistyped field names) at runtime. Auto-completion,
which can be found in all modern software toolkits, was
not available. Instead, we manually had to look up the
exact definition of each structure. Only after several
months were ImgMan structures so engraved in our minds
that this activity became less burdensome.

Refactoring
With constant changes in system and user requirements,

many modern software engineering techniques highlight
re-factoring as an essential piece of the development cycle
[2]. LCLS project was no different as we did not have all
requirements set in stone before the commissioning.
Unfortunately, the lack of proper re-factoring tools in
Matlab made every change in ImgMan, especially during
the last few months of development, an excruciating task.

No need to declare variables
Matlab doesn’t force programmers to declare variables

before using them. Thus, typos could only be discovered
at runtime. Eventually, we learned to type out variables
only during initialization, and to copy and paste them
subsequently.

Working from home
We originally thought that we could develop ImgMan

from home by running the IDE on a machine at SLAC
and displaying it locally via forwarding X11 over SSH.
Then we discovered that Matlab’s IDE was based on Java
1.4 Swing framework that has documented performance
problems in remote display environment [3]. Basically,
the Matlab IDE was completely unusable in our scenario.
Even though we found some workarounds, developing
ImgMan from home had never become a pleasant
experience.

Confusing syntax
Despite the fact that it is learned by many non-

professional programmers, we found that Matlab syntax
was harder to grasp than expected. The biggest confusion

came from correctly using arrays. Matlab features the so-
called column and row arrays, whose elements are
addressed in different ways. Generally, we overcame this
obstacle quickly, but there had been isolated instances of
mistakes until the end of the project.

LIGHT AT THE END OF THE TUNNEL
We also had some positive experiences with developing

Matlab programs.
Since Matlab is an interpreted language, ImgMan code

could be changed without restarting the application. This
feature was very helpful during commissioning in front of
the physicists.

Most notably, physicists were able to not only provide
us with their complex functions for image processing, but
also to debug ImgMan on their own. We can proudly say
that, at least by the end of the project, our work was
conducted in close cooperation and led to close ties with
LCLS physicists

CONCLUSION
Due to the lack of many features available in

established programming languages, we recommend that
only small software projects are developed in Matlab. For
more complex tasks, we suggest sticking with traditional,
more powerful languages. If a close integration with
physicists is desired, support for Matlab scripts could be
added to the developed software. Last, but not least, we
think that for a successful Matlab project, programmers
should be supplied with standalone licenses, so that they
can work from home.

REFERENCES
[1] Michael Zelazny, “Electron Bunch Length

Measurement for LCLS at SLAC”, ICALEPCS’07,
Knoxville, October 2007

[2] http://c2.com/cgi/wiki?WhatIsRefactoring.
[3] http://java.sun.com/products/java-

media/2D/perf_graphics.html#70248.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA25

Software Technology

145

