
INTERFACING OF PERIPHERAL SYSTEMS TO EPICS USING SHARED
MEMORY

E. Tikhomolov, TRIUMF, Vancouver, Canada

Abstract
Interfacing of peripheral control and data acquisition

systems to an EPICS-based control system is a common
problem. At the ISAC radioactive beam facility, both
Linux-based and Windows-based systems were integrated
using the “soft” IOC, which became available in EPICS
release 3.14. For Linux systems, shared memory device
support was implemented using standard Linux functions.
For Windows-based RF control systems, the soft IOC
starts by a separate application, which uses shared
memory for data exchange with the RF control
applications. A set of DLLs exposes an API for use by the
application programmer. Additional features include
alarm conditions for read-back updates, watchdogs for
each running application, and test channels.

INTRODUCTION
Different user groups at ISAC develop their specific

subsystems for automation of experiments, data
acquisition and control of peripheral devices. The ISAC
Controls group has the task of integrating all these
different subsystems into the running EPICS-based
control system.

The beam diagnostic systems (BDS) installed in ISAC
are implemented in VME crates with Input/Output
Controllers (IOC) running Scientific Linux [1]. Such
IOCs are referred to as LIOC below. Data acquisition and
hardware control applications are running on LIOC and
must interface to EPICS clients such as the Extensible
Display Manager (EDM [2]), Matlab applications with
Matlab Channel Access (MCA [3,4]), and others.

The RF control system (RFCS) [5] in ISAC-II runs in
dedicated PCs under the Windows operating system.
Several control applications are running at the same time
on the same PC. All applications are implemented with
Borland C++ Builder. Besides local control, it is
necessary to implement remote control of the running
hardware. EDM can be used for this purpose but it is
necessary to implement a software middle layer between
the RFCS and the EPICS clients.

The Laser control system (LCS) at ISAC uses
commercial software. This application is used as
delivered and does not need to be developed and changed
by the Laser development team. It needs, however, to be
operated remotely by EPICS clients.

These systems are running on different platforms and
have different requirements for operations. All these three
systems could, however, be integrated using the EPICS
“soft” IOC. The soft IOC provides communication with
EPICS clients and exchanges data with other running
applications via shared memory. The soft IOC starts as a
separate application which is implemented and

maintained by ISAC Controls group. In addition an
application programming interface (API) was developed
for the BDS, RFCS, and LCS developers which provides
access for their programs to the shared memory.

LINUX AND WINDOWS SOFT IOC WITH
SHARED MEMORY

Linux BDS Soft IOC
For the BDS we used the standard EPICS way of

adding new devices to the system. A specific application
running on LIOC defines a virtual “card” which provides
all required functionality: turning on and off, starting data
acquisition, collecting data etc. Virtual “card” number is
associated with the sequential number of the shared
memory segment. The shared memory segment is
organized as a set of arrays of different EPICS record
types. The maximum number of elements in each array is
predefined. Mapping between EPICS PVs existing in the
soft IOC and in the shared memory segment is arranged
as follows: the high digit of the signal number defines the
record type; lower digits define the index in the array. For
example, the string "#C2 S3004" means “card” 2, record
type 3 (which is in our implementation an aiRecord), and
signal/index 4.

During soft IOC initialization each EPICS record
checks whether the shared memory segment (“card”) is
initialized. If not it creates a new one and puts the PV
name into the shared memory record field with the related
index/signal. The device support for each record type
automatically provides exchange of data between EPICS
PVs and the shared memory counterparts.

The soft IOC starts on LIOC as a separate application
when the Linux operating system boots. After
initialization of the soft IOC the BDS application is
started using a system call from a subroutine record. The
application is running an infinite loop (with period of 0.5
sec) in which it gets or sets values in shared memory. A
Set/Get API is provided by the ISAC Controls and is part
of the distributed libraries. Set/Get functions use as an
argument the PV name to find the corresponding index
for reading/writing a value into the shared memory
segment.

We describe the basic operations of BDS using an EDM
display which is used in daily operation of this system for
control of silicon detectors (Fig. 1). In the top left portion
of Fig. 1 are control and read-back of beam line devices
provided by ISAC Control System IOCs. The remainder
of the display is controlled by soft IOC. The main control
operations are as follows:

• Buttons Start Appl, Stop Appl are used to start/stop a
data acquisition application implemented by the
beam diagnostic developers who use the API

TPPA29 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

152

provided by the ISAC Controls. The buttons message
an EPICS subroutine record which starts the BDS
application using a Linux system call. The
application name (sid) and the PV prefix name
(SEBT:SID4:) are specified in the EPICS database.
When the application starts, the adjacent LED turns
green and the watchdog starts counting. In this state
the application loops awaiting commands for data
acquisition.

• Different modes for collecting data can be specified
by pressing buttons Run continuously, Run with
autoreset (period is specified in adjacent box), Run
for specified period of time. Stop Data Acquisition
returns application to the waiting state.

• The right part of the screen is used for visualization
of data by using a Matlab application with Matlab
Channel Access [4].

The EPICS database is created by using the Capfast
tool [6] using ISAC Controls device database and
associated web application [7].

Windows RFCS TRIUMF Soft IOC
Several RF Control applications run under the Windows

operating system on dedicated PCs. Initially the RFCS
was integrated into EPICS by using a customized
TRIUMF version of the Portable Channel Access Server
[8]. When the soft IOC became available in EPICS release

3.14 it was decided to upgrade the system to use the soft
IOC to implement the RFCS-EPICS interface.

The RFCS soft IOC starts as a separate Windows
application TRSOFTIOC. All RFCS applications run at
the same time and provide the functionality of the system
as a whole. For the shared memory interface, one
common shared memory segment is defined. Its
organization is an array of “generic” EPICS records. Each
element of the array has such EPICS components as
name, value, drive and alarm limits, etc. At the same time
the array element has specific non-EPICS components
like watchdog, local/remote flags which indicate whether
a local application or a remote EPICS client changed the
value. Each PV in the soft IOC is associated with an
element in the array, and the index of the array is used as a
PV handle.

After starting of the soft IOC the shared memory
segment is initialized and a thread starts which updates
values between the soft IOC and shared memory. The
thread checks the flag local/remote update and sets the
value either in shared memory or in soft IOC.

The RFCS developers are provided with an API which
they use in their control applications. The description of
the API can be found in our previous paper [8]. Functions
are deployed in the form of DLL files which are used by
both TRSOFTIOC and RFCS applications. Thus it is
possible to create a shared memory segment available for
both sets of applications using pragma instructions. We

Figure 1: EDM screen used to control silicon detectors at ISAC and ISAC-II.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA29

Software Technology

153

also tested a memory-mapped file model which can be
used for the same purpose. This model is more convenient
when it is necessary to create several shared memory
segments like in the case of Linux BDS soft IOC.
However, for RFCS when only one segment is needed we
used the pragma model.

The development path for the RFCS applications is
dynamic and independent from the ISAC EPICS
interface. The addition of variables to the RFCS which
must be available as new EPICS PVs should be done
without direct participation of ISAC Controls. To
decouple the reliance on ISAC Controls, the RFCS
developers are provided with a configuration XML
template file which contains information about PVs. This
file is then maintained by the RFCS developers. Starting
of the soft IOC occurs in two steps. A console Windows
server application TRSOFTIOC generates the EPICS
database "on the fly" from the XML file and then starts a
soft IOC that uses this database. At the same time shared
memory is initialized.

Figure 2 shows the console window of TRSOFTIOC. It
has several watchdogs which indicate running
applications. The same watchdogs are shown in EDM
screens available for remote operators. When one of the
RFCS applications stops an alarm is raised on the remote
operator's machine. The application has a local/remote
control button which switches the mode of operation
during tests and diagnostics. Reliable monitoring of the
RFCS requires that the RF programmer updates all read-
back variables at regular intervals. If read-backs are not
updated for a specified period of time the TRSOFTIOC
flags them as “invalid”. The TRSOFTIOC also provides
test channels which are used for diagnostics and
troubleshooting.

LCS “ Minimalistic” Soft IOC
The LCS developers use commercial software and do

not need to change the number of EPICS PVs. Here a
minimalistic approach is acceptable. The soft IOC starts
as usual, as a separate application. EPICS PVs are
specified in a database file in accordance with variables
used by the LCS application. Additional code was added
to the existing software to communicate with the soft IOC
whenever the application starts. Data exchange between
the soft IOC and the user application occurs using shared
memory as in the case of RFCS.

DISCUSSION
Different local control subsystems were integrated into

the ISAC control system using a shared memory interface.
Each local control system has different requirements for
running applications, development flexibility and
interaction with the EPICS-based system. These
requirements can easily be accommodated by variations in
the implementations of the shared memory interface.
These variations, however, are transparent to the EPICS
clients and thus create the common operational
environment for different subsystems. .

ACKNOWLEDGEMENTS
The authors thank J. Richards for support in installation

and tests of the described systems, R. Keitel for valuable
suggestions for code development, G. Waters for generous
sharing of his experience in working with new EPICS
releases and soft IOC, R. Nussbaumer for his advices on
solving Linux issues, and Victor Verzilov who started
investigation on integration of BDS into EPICS at ISAC-
II.

REFERENCES
[1] Scientific Linux, https://www.scientificlinux.org/
[2] John Sinclair, http://ics-web1.sns.ornl.gov/edm/
[3] MCA, http://ics-web1.sns.ornl.gov/~kasemir/mca/
[4] E. Tikhomolov, “Processing And Visualization of

Epics Data with Matlab Applications”, this
proceedings.

[5] K. Fong et al., “Status of RF Control System for
ISAC-II Superconducting Cavities”, Linac2004,
Lübeck, p.450.

[6] Capfast, http://www.phase3.com/
[7] R. Keitel, J. Richards, and E. Tikhomolov, “Upgrade

of the ISAC Device Database from Paradox to
PostgreSQL”, ICALEPCS’03, Gyeongju.

[8] E. Tikhomolov, G. Waters, R. Keitel, “EPICS Portable
Channel Access Server for Multiple Windows
Applications”, ICALEPCS03, Gyeongju.

Figure 2: TRIUMF Soft IOC application with shared
memory for Windows.

TPPA29 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

154

