
PRESENT STATUS OF VEPP-5 CONTROL SYSTEM

D.Yu.Bolkhovityanov�, A.Yu.Antonov, R.E.Kuskov
The Budker Institute of Nuclear Physics, Novosibirsk, Russia

Abstract

As VEPP-5 moves to commissioning, its control sys-
tem — CX — becomes more mature. CX is a distributed,
networked control system based on a 3-layer “standard
model”. It has been used for VEPP-5 control since 2000;
most hardware is CAMAC and CAN-bus. Currently most
control programs have switched to modular plugin-based
architecture, which significantly eases development of ap-
plications and enhances the whole control system integra-
tion. Large-data-size control hardware (such as digital os-
cilloscopes and CCD-cameras) is fully supported by CX
now. E-logbook is currently being deployed, both as a web
application and with direct support in control programs.
GIS technology is being introduced to the control system,
which opens many interesting possibilities.

VEPP-5 INJECTION COMPLEX

VEPP-5 injection complex [1] is destined to provide
electrons and positrons to all BINP electron-positron col-
liders — existing VEPP-3/VEPP-4M complex and VEPP-
2000, which is currently being put into operation. VEPP-5
is able to produce more than 10�� positrons per second,
which exceeds requirements of all users.

VEPP-5 (see Fig.1) consists of 300 MeV electron linac,
conversion system, 510 MeV positron linac, and damping
ring with beam injection and extraction channels.

It includes a number of separate systems, requiring com-
puter automation:

� Vacuum control.
� Linac magnetic system.
� Damping ring magnetic system.
� RF-synchronization.
� Beam diagnostic system.

and some more.

VEPP-5 CONTROL SYSTEM

Hardware

VEPP-5 uses mainly CAMAC and CAN-bus control
hardware, most of which is designed and produced inhouse.

Historically CAMAC crates were driven by “intelligent”
BINP-designed “Odrenok” controllers (for complex tasks)
and by “dumb” serial controllers (for simple/slow tasks).
For CAN-bus initially PCI interface cards were used.

Currently most of these are replaced by PowerPC-based
controllers[2]. CAMAC and CAN controllers are similar,

� bolkhov@inp.nsk.su

differing mainly in interface. Having 50MHz PowerPC 852
CPU, 32M RAM and 100Mbit Ethernet onboard, they run
Linux, thus providing a rich and familiar environment.

Control room computers are 4 office-class PCs with
Pentium-III/800MHz and 1G RAM, with 4 Xinerama-
joined monitors each. There are 2 more PCs dealing with
hardware, differing only with no displays. All of these run
Linux. So, there’s a unified environment across all 3 layers
of control system, which significantly simplifies develop-
ment and support.

Software

VEPP-5 control system software was created inhouse —
mainly due to absence of any reasonable choices in due
time.

This software, named CX[3], uses networked 3-layer
standard model. It is written entirely in C and uses single-
threaded approach which ensures simplicity and reliability.
Drivers are loaded dynamically at run-time, thus making
the system flexible.

In recent years unified support for arbitrary-size chan-
nels (up to 4Mb) was added. So, now all required hardware
is supported by CX directly,

Besides VEPP-5, CX was used to automate several
small-scale experiments, and had proven to be adequate for
such tasks.

UNIFIED MODULAR GUI

Usually most control applications can be fit into one of
2 classes:

� “Simple” applications, which just present a number
of “screen instruments”, directly mapped to hardware
channels. Such applications are often implemented
with help of so called “display managers” and are in
fact just some descriptions of control screens.

� “Intelligent” applications — those that can’t fit into
1st category. This can be conditioned by some non-
trivial computations or specific data processing, feed-
back, or a need to display data in some unusual way.
Such applications must be coded individually.

In 2006 the standard libraries, which effectively consti-
tute CX display manager (called ���������), were ex-
tended to support “user-supplied”, “plug-in” display knobs
in addition to standard ones.

So, now all CX control programs can be implemented as
“simple” applications. This modular approach significantly
decreases cost of application develompent and allows to

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPB18

Status Reports

199

To VEPP−4

Conversion system
(positron production target)

510 MeV Linac

300 MeV Linac
Preinjector

Damping Ring

To VEPP−2000

Figure 1: VEPP-5 injection complex layout and parameters.

deal with systems, which previously required “intelligent”
applications, in a unified way[4].

E-LOGBOOK

An electronic logbook (e-logbook) becomes a must for
large experimental facilities not only during operation, but
also at building and commissionning stages (where VEPP-
5 is now).

Unfortunately, the “market” of such products is almost
nonexistent. So, the choice is narrow: either use some other
lab’s software (adapting it for local needs) or create your
own one from scratch.

We have chosen the former way and picked DOOCS e-
logbook from DESY. Main changes concerned localization
(since Russian uses cyrillic letters, not latin) and data feed-
ing mechanism (due to different model of logging from ap-
plications).

E-logbook is deployed at VEPP-5, and consensus of
opinion is that it should have been done “the day before
yesterday”.

GIS

Geographic Information Systems (GIS) look very
promising for use at an accelerator complex. Their appli-
cation can include equipment inventory system, automatic
generation of visual control screens, and so on. VEPP-
5 traditionally uses free software, so we made a survey
of available free GIS tools and systems. Free GIS tools
haven’t yet reached the same state of maturity as commer-
cial ones, so the choice is neither unambiguous nor trivial.

For now, we have settled on Mapserver. Preferrable data
storage is PostGIS, which provides GIS extensions to Post-
greSQL relational database. Server-side PHP software, al-
lowing web-browsing of GIS data, is currently being de-
veloped. The next stage would be a standalone “VEPP-5
Explorer” application to provide all control parameters in

symbolic circuit view.
Main complexity lies in the fact that AutoCAD draw-

ings, used as source of GIS data, are poorly suitable for
this task: they contain disjoint shapes and lots of useless
information. So, these source files have to be hand-edited
before storing data in GIS. Additionally, logical object in-
formation (also lacking in .DWG files) have to be added.

Unfortunately, the principal conclusion is that free GIS
software is too immature at present time. There’s no one
complete solution, and everyone has to do many things (in-
cluding basic ones) himself.

WEBIFICATION

Besides control software as such, control system requires
a number of supporting services.

As web gains ubiquity, and many services are web-
oriented or at least have a web-interface, web has become
the most reasonable platform for supporting services.

So, we allocated a dedicated Linux PC with Apache,
which runs following services:

� Subversion, which stores all source files of control
system and related software.

� Shift planning system.
� Hardware configuration database.
� E-Logbook.
� GIS.
� Web-presentation of current status.

This approach also significantly eases and quickens in-
stallation of control system for other projects.

FUTURE DEVELOPMENT

Hardware

In 2008 long-serving PIII-800s with RedHat-7.3 will be
replaced with modern PCs. Our current OS of choice is
CentOS, as most stable yet free.

TPPB18 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Status Reports

200

Another change concerns display system. Modern
videocards support very high resolutions, and there are ap-
propriate monitors on the market at affordable prices. So,
we plan to replace 4 individual (albeit joined via Xinerama)
1152�864 monitors with a single large one, such as Sam-
sung 305T (30”, 2560�1600). Elimination of interscreen
gaps will make work more comfortable and enables more
rational use of screen space.

Software

As CX is almost 10 years old now, the volume of desired
improvements has exceeded some “critical mass”. More
precisely, cost of correct implementation of all improve-
ments would be higher than re-writing the whole system
from the ground up. So, the next, 4th version of CX is
currently being written from scratch. This allows to base a
new version on different principles.

Control systems, like most other software, are usually
created according to more or less fixed requirements. But
when requirements (unexpectedly!) change or, even worse,
interoperation with a different control system is required,
the developer finds himself in a trouble, since (s)he has to
touch many places and aspects of the code.

The point of plug-ins technology[5] is replacement of
a fixed implementation (or a fixed set of bindings) with a
dispatcher and a set of implementatios, which can be easily
extended later. This allows to take specific and potentially
mutable areas of code out of a basic framework. These
parts are placed into separate modules and some dedicated
API is used for interaction. More modules can be added
later as required, adding unforeseen functionality to oth-
erwise intact system. Plug-ins are often implemented as
dynamically loaded libraries (�	
-files in Unix, DLLs in
Windows), so that extension can be performed “on the fly”,
without a need to recompile the core.

Most control systems already use this approach at one
particular place: drivers are usually separated from other
code and are developed separately. CX goes one step fur-
ther and since 2006 also uses plug-ins approach for screen
knobs[4].

CX version 4 is based on plug-ins approach at all levels
(see Fig.2).

Modular implementation of data-server access layer for
clients would enable CX clients to easily access hardware,
controlled by other control systems (EPICS, LabVIEW, ...).
On the other hand, replacement of a single data-access pro-
tocol implementation in CX-server with a modular fron-
tends architecture would allow other control systems to ob-
tain CX-controlled data. Thus, use of plug-ins approach
makes integration with other control systems an easy task.

Windows ntegration

Another improvement is Windows support. Initially CX
was postulated to work under Unix/Linux only. But in prac-
tice most physicists wish to have access to control system

Communication protocols

Screen configuration
descriptions’ readers

Math/scripting
(TCL, formulae, ...)

Execution environment

Hardware access layers

Data access frontends

Misc. modules

Local Drivers

HW DB readers
(RDBMS, local, ...)

C
lients

S
erver

D
rivers

GUI implementations

Screen instruments

. . .

. . .

CX EPICS/CA

CX EPICS/CA

Figure 2: Plugin-based architecture of CX version 4
(shown are pluggable parts).

from their Windows desktops. So, CXv4 is being devel-
oped to support Windows from the beginning.

REFERENCES

[1] P.V.Logatchev et al, “Status of VEPP-5 Injection Complex”,
Proc. RuPAC-2006
�����������	
���������������������������

[2] D.Bolkhovityanov et al, “PowerPC-based CAMAC and
CAN-bus controllers in VEPP-5 Control System”, Proc. PCa-
PAC’2005 (Hayama, Japan, March 2005)
�������	�������	��������	���	
������

�������������

[3] D.Bolkhovityanov, “VEPP-5 Injection Complex Control Sys-
tem Software”, 2007, Ph.D. thesis (in russian)
������������������� !�"���#���!"����

!�"���# ��� ����"���

[4] D.Bolkhovityanov, “UI-oriented Approach for Building
Modular Control Programs in VEPP-5 Control System”,
Proc. PCaPAC-2006 (Newport News, VA USA, October
2006)
������������������� !�"���#���!"����

�	���	
��� �$% ��������

������������������� !�"���#���!"����

�	���	
��� �$% ���������

[5] “Plugin”, Wikipedia, the free encyclopedia
��������������������&������'"�&��

I

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPB18

Status Reports

201

