
OPERATIONAL TOOLS AT THE STANFORD LINEAR ACCELERATOR

CENTER*

G.White
#
, S. Chevtsov, P. Chu, D. Fairley, C. Larrieu, D. Rogind, H. Shoaee, M. Woodley, M.

Zelazny, Stanford Linear Accelerator Center, Menlo Park, CA 94025, USA

Abstract
Operational tools, for the purposes of this paper, are

specifically those software applications which are used in

the context of operations, to analyze or optimize a large

scientific instrument. At SLAC, such tools for online

accelerator physics, have been in continuous development

for 20 years. This paper first reviews those tools from the

perspectives of their scientific functionality and

implementation. Present operational software

developments are then introduced, together with the

infrastructure created to enable migration from the host

computers and operating systems on which those tools

have run in past, to the new systems. Some techniques

and experiences in bridging EPICS, CORBA, Matlab, and

Eclipse are included.

INTRODUCTION

The first part of this paper presents a review of the

scientific software applications that have been developed

for use in the particle accelerator complex at SLAC. Such

tools are concerned with the diagnostics and optimization

of accelerators, typically by applying accelerator

modeling and numerical methods to online instrument

data, and applying the results to the control system.

Examples of such systems are “Correlation Plots”, which

is a facility for conducting small ad-hoc experiments,

orbit correction, beam-path modeling, lattice matching,

feedback, model diagnostics, beamline diagnostics,

calibration, and beam-based alignment, and other tools for

online experiments. For many years at SLAC, these have

all been collocated in a single executable, which enables

very tight application integration. Those mature, and very

successful, applications are described first. Then we

describe present work to transition those existing

applications, plus new tools and methods that have been

enabled by advances in technology, to new architectures,

in both hardware and software. This includes a description

of the foundational infrastructure that we are putting in

place to support both the migration, and scientific

scripting directly from tools like Matlab, Excel, gnuplot,

and so on. Lastly, we introduce the long term application

infrastructure we are developing for our vision of

the architecture required for online accelerator science

over the next decade.

THE SLAC CONTROL PROGRAM

The central online operational tool used at SLAC has

been the "SLAC Control Program" (SCP). This single

executable incorporates all scientific applications that we

initially wrote for the Stanford Linear Collider, and all

SLAC accelerators and beamline experiments since. The

SCP is composed of >2M lines of high level code,

mostly Fortran, some C/C++, implemented in 48

dynamically linked libraries, running on Alpha/VMS

hosts. It mostly uses a proprietary control network (slcnet)

to communicate with iRMX front-end processors and,

notably, EPICS (Experimental Physics and Industrial

Controls System) front-end processors using a specially

crafted control network message-code bridge system

called the SLC-aware-IOC, implemented itself in EPICS

Input/Output Controllers (IOCs). All the scientific tools

and all other control displays, such as magnet, BPM, and

RF setup and operation, co-reside in a single instance of

the SCP executable. The user interface is shown in Figure

2. In total there are ~3500 panels in the SCP, only some

relatively small fraction of which are involved with

operational scientific applications.

Figure 1: Transitionary phase of SLAC online physics

software tools. Physics tools are being moved from a

legacy Fortran/C VMS system, to Java/Eclipse on Linux;

matlab is helping to bridge the gap.

An advantage of implementing applications in this

monolithic suite of dynamically linked libraries, is that

they are interoperationally very tightly integrated. All

persistent state data of every application is available to

every other application, without, in fact, a strict API or

layered software architecture, or formal state sharing

mechanism, and every application can directly call

functions of any other. Although informal, this has proven

very effective in the specific lifetime of this system,

~1985 to the present.

SELECTED SCIENTIFIC APPLICATIONS

OF THE SCP

This section reviews some of the scientific applications

of the SCP. These are now very mature and include

significant scientific utilities and usability features.

WOAB01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Operational Tools

288

Figure 2: The user interface is composed of 3 main

screens: i) a "panel" screen housing all the “buttons” of

the Graphical User Interface (there are no pull-down

menus, sliders, dials etc), ii) a graphics screen on which

all data is presented, mostly in tabular or graphical form,

and iii) a continuously updating message window

that presents all messages relating to what the individual

SCP user is doing in one half, and all global messages of

the accelerator in general in the other half.

Beamline Plotting

A utility application that can plot an arbitrary function

given by coordinate pairs along a beamline, is used to plot

beam position data, dispersion, any twiss parameter,

calculated orbit correction etc, by Z location. A notable

feature is that it can augment the ordinate axis with

meaningful information, such as lattice description and

region names; and it can estimate the number of device

names that can meaningfully be inscribed onto the axis.

Figure 3: Orbit fitting in the SLAC Control Program. This

brings together orbit acquisition, save/restore

configurations, and beamline orbit plotting.

The beamline plotting system is used by many

applications of course; among them orbit plotting and

orbit fitting (see figure Figure 3). Two very heavily used

applications are Orbit Correction and Correlation Plots.

Orbit Correction

The mechanism of Orbit Correction has been described

many times elsewhere, but for the purposes of describing

some interesting specializations of it developed for the B-

factory at SLAC, it is first outlined briefly here. The role

of orbit correction (sometimes called “Steering”) is to

reduce the RMS of the beam orbit and hence overall

emittance. In its simplest form, it reads the value of beam

position measurement devices (BPMs) in the beamline

section to be corrected, and calculates new energization

levels for corrective lattice devices (typically “corrector”

dipoles), by solving the system of linear equations which

relate the effect of each the corrective device on the beam

position at each BPM, for the present orbit offset values,

and then changing the energization level in the correctors

by the sign reversed solution value. That is, it solves the

matrix equation:

min || Ax b || 2

subject to xj < xj max

where A is the matrix of coefficients of the system of

equations relating the effect of each corrector xj on each

BPMbi. Typically, these coefficients are precomputed

from the beam lattice model (though they may be found

experimentally). For X plane orbit correction using only

X-plane correctors the elements of A would be the so-

called R12s. The “orbit correction problem,” is then

formed by the unknown x , being the vector of desired

corrector changes (sign reversed), and b being the vector

of present BPM readings*. At SLAC, two main numerical

methods are used to compute the minimization: Micado,

and a specially formulated Singular Value Decomposition

(SVD).

Some interesting facilities have been developed in the

context of SVD for orbit correction at SLAC. The first is

an extension of the SVD numerical method itself. It is to

include interval constraints on the solution elements x j

and so include the practical limits of corrector maximum

settings directly in the numerical problem. This is done by

casting the eigenvalue decomposition done by the SVD,

which eliminates the basic problem of matrix degeneracy

inherent in the lattice of the B-factory accelerator, into a

space in which the solution elements’ interval limits can

be posed in a minimization problem which can be given

to a solver that can accept solution intervals, but not

singular objective matrices (A). These two numerical

solvers were formerly mutually exclusive, since the SVD

itself does not include solution intervals, and even robust

* Don’t be confused by the use of the letter x above to designate both the

unknown vector in the matrix form of a system of linear equations, and

to designate the X plane of an orbit

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WOAB01

Operational Tools

289

Chi Sq methods, which can include intervals, do not work

well to solve near-singular systems. This hybrid

numerical method is described fully in [1].

Both the beam offset from the main axis (in X, Y, or in

a plane coupled region X and Y together) may be

minimized, together with dispersion simultaneously. This

is all done by constructing the objective matrix A as a

block matrix of appropriate sub-matrices, and weighting

the blocks appropriately [2]. The block matrix

characterizing dispersion, which would be rows of R126s

added under the R12s of the orbit block matrix in A, is

nominally weighted 0.05 (so the orbit block would be

weighted 0.95), though this can be changed from the user

interface.

Other additions include:

1. Either the model transport “R” (or sometimes

called “T”), or, for a ring, the closed obit “C”

elements, can be used to form the orbit block

of the objective matrix A

2. If numerically underconstrained, the problem

can optionally be posed such that the particular

solution will be that which would result in the

smallest absolute corrector values

3. Residuals that are at high variance compared

to the others, may well correspond to BPMs

which are simply reporting incorrect

measurements. The equations for such BPMs

can be removed according to a user specifiable

residual value “sigma-cut”. Failing BPMs are

reported, then removed from the problem, and

the minimization is repeated. Reported BPMs

can be interpreted as a prompt to check the

hardware

4. The orbit position and angle can be held

constant at any location, for instance ring

injection, again by augmenting the objective

matrix A with highly weighted equations.

Figure 4: Orbit Correction example from the SLAC B-

factory, showing an acquired beam orbit and calculated

correction and predicted resulting orbit.

 Multiknobs and Bump calculation

The “multiknob” facility, for simultaneously changing

the value of many devices, each by some designated

coefficient, is heavily used at SLAC. The “Bump”

application, which builds on multiknobs, can be used to

calculate corrector coefficients whose effect will be to

sweep the beam though some range of orbit offset (a

“position” bump) or angle, using 3 or 4 correctors, while

holding the orbit outside the bump constant.

Correlation Plots

One key contribution of software to the analysis and

optimization of the SLAC accelerators, has been the

Correlation Plots (CP) application. CP enables a user to

conduct simple accelerator experiments online, through its

ability to scan any “stepable” control system variable, and

read back many other “sampled” variables on each step.

The stepped and sampled variable values are recorded,

and results can be plotted and fitted. Expressions in the

variables themselves can evaluated in CP’s spreadsheet-

like GUI. Both 1D and 2D scans are supported. An

important aspect of Correlation Plots, which probably

gives rise to much of its popularity, is that the variables it

understands how to step and measure need not be simply

control system process variables, but rather richer

scientific quantities computed by special purpose code

elsewhere in the SCP. For instance, CP knows the

procedure to step the energy of the B-factory, or drive a

multiknob, and it can sample such things as the fit

parameters of an orbit fit computed by the application

described above, as well as many other similar “macro”

variables.

The above overview gives some flavor of the

applications in the SLAC Control Program, which have

been used to optimize the accelerators in the SLAC

complex for 20 years. However, with the commissioning

of the Linac Coherent Light Source (LCLS) accelerator,

the three complexities of any such significant software

reimplementation arose. Firstly, the rich and mature

legacy applications, on VMS, should be usable with the

process variables of new controls system, which was

based on EPICS. Secondly, we wanted the legacy

proprietary controls system, modeling and data processing

of the legacy system to be available to unix based

commissioning tools like Matab, and to the new scientific

applications. Thirdy, the new scientific applications

themselves to be rethought. The new applications and

required infrastructure for this transition is where the

remainder of this paper concentrates.

DATA AND CONTROLS INTEGRATION

To connect the legacy applications to the new EPICS

based control system, we developed an “SLC control

system aware IOC”. This is a control system message

code bridge, which translates messages such as “trim this

list of magnets” or “acquire beam position data for this

list of beam monitors” in the protocol of SLC control

WOAB01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Operational Tools

290

system, to Process Variable operations and sequences that

can be acted on by EPICS Input/Output Controllers.

To connect modern unix based Java or Matlab based

applications to the legacy VMS control system, a CORBA

based internetworking system called AIDA (Accelerator

Independent Data Access [4]) was used. AIDA was first

developed as a design study for the International Linear

Collider (ILC). AIDA provides data location and

semantics transparency to client applications. That is, a

client asks for data (or to set it), and AIDA works out

which control system, data storage or modeling system etc

and host computer to ask for that data, and most

importantly, makes the translation of how to ask.

Figure 5: AIDA is implemented in CORBA. The graphs

show AIDA’s Java CORBA (Orbacus) performance over

a 100Mbit Ethernet for acquisition of a single Double

value (top) and for a dynamically constructed structured

data object of an array of 11 doubles and an array of 11

strings (bottom), showing 900 roundtrip times. Note the

Virtual Machine warmup evident at the beginning of the

test of the structured object. In practice, AIDA’s median

performance of 2ms for simple data, and less than 10ms

for structured, has been easily fast enough for high level

applications software.

MATLAB APPLICATIONS

Matlab has been used both for scripting ad hoc

solutions during the commissioning of LCLS, and as an

interactive GUI application platform. Since new aspects

of the SLAC accelerator controls specifically developed

for LCLS, were done in EPICS we use the labCa system

to connect Matlab to EPICS Process Variables (PVs) [3].

To enable the body of our legacy control system and

applications to be used from within Matlab for LCLS

commissioning, we employed the Java API of the

Accelerator Independent Data Access (AIDA) system

described above, since Matlab allows java calls to be

made directly from scripts with no wrapping. We shall

also be using this feature of Matlab to script XAL.

Given the infrastructure tools above, our experience of

Matlab has been that it is an effective rapid development

tool for applications that used the numerical analysis of

Matlab significantly. Among these applications were a

framework for prototyping and testing feedback

algorithms, and GUI applications for beam profile image

acquisition and analysis, beam bunch-length

measurement, a Matlab based system for conducting

simple correlation finding experiments through the

control system, emittance measurement, and many other

smaller applications.

Figure 6: Screenshot of the Bunch Length Measurement

application scipted in Matlab, using in Mathwork's

GLIDE tool for constructing graphical user interfaces for

Matlab programs.

Use of Matlab as an online tool also proved very

popular among scientists who were already familiar with

Matlab for data analysis. When they were provided

methods to interface to the control system and data

acquisition from directly within Matlab’s scripting

language, they could script applications and ad hoc

analysis for themselves.

In these contexts, it very successfully satisfied our

commissioning schedule. However, Matlab GUIs are

slow, particularly if used in some thin client remoting

context like over X11, and since it’s oriented toward

scripting it lacks programming constructs required for

large, integrated, error-tolerant control system user

interfaces. Additionally, some programmers who were

accustomed to coding tools available in modern Integrated

Development Environments (IDEs), like “refactoring”

(where all instances of the use of a method or object, can

be changed by the editor automatically) found the process

of programming itself clumsy. In the light of these

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WOAB01

Operational Tools

291

drawbacks, we shall develop the production quality

scientific applications necessary for LCLS operations (as

opposed to commissioning), using a purpose built Java

GUI framework, and use Matlab within that GUI

framework for numerical and graphical tasks.

SLAC ECLIPSE ACCELERATOR LAB

Physics software applications for the Linac Coherent

Light Source, and some other large experimental facilities

of SLAC, will be developed in a new software

framework. This platform for applications, is

implemented as a Java Eclipse RCP (Rich Client

Program) [6]. It system integrates code from a number of

sources; XAL, a Java package for control and

optimization of particle accelerators [7][8]; Java code

emitted by the Matlab Builder for Java [9]; together with

Aida and Java Channel Access data interfaces, and

applications of the Control system Studio (CSS) [10].

Figure 7: SEAL with the Online Model perspective. The

perspective contains a workspace navigator displaying the

workspace file system (upper left), a beam line sequence

selector (upper middle), an online model run control

(upper right) and an orbit data plot panel for showing the

model run result (bottom).

CONCLUSIONS

Historically at SLAC, scientific software developed for

accelerator operations, have been very successful. This

has been, in part, due to the great interoperation of the

applications themselves, together with their very specific

concentration on the physics problems of the machines on

which they were used. These joint considerations are

guiding us in new developments when using modern

software tools and techniques.

Figure 8: SEAL with the Data Browser perspective. The

perspective includes Data Browser Archives view (left),

Data Browser Config view (bottom right) and a blank

editor area (upper right).

REFERENCES

[1] G. White, T. Himel, H. Shoaee, Hybrid
Numerical Method for Orbit Correction, SLAC-PUB-
7653, presented at 17TH IEEE Particle Accelerator
Conference (PAC97), http://www.slac.stanford.edu/
pubs/slacpubs/7000/slac-pub-7653.html.
[2] Gene H. Golub and Charles F. Van Loan, Matrix
Computations, The Johns Hopkins University Press,
3rd Ed 1996.
[3] G.White et al., AIDA: ACCELERATOR
INTEGRATED DATA ACCESS, presented at
ICALEPCS’01. http://www.slac.stanford.edu/econf/
C011127/THAP011.pdf.
[4] Till Staumann, SLAC, labCa.
[5] High-level Application Framework for LCLS,
Paul Chu Chungming et al., ICALEPCS’07.
[6] http://www.eclipse.org.
[7] T. Pelaia et al., XAL Status, ICALEPCS’07.
[8] J. Galambos et al., XAL Application
Programming Framework, ICALEPCS’03.
[9] The Mathworks, http://www.mathworks.com/
products/javabuilder/
[10] J. Hatje, Control System Studio (CSS),
ICALEPCS’07.

WOAB01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Operational Tools

292

