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Abstract 
 The LHC Software Architecture (LSA) project will 

provide homogenous application software to operate the 
Super Proton Synchrotron (SPS) accelerator, its transfer 
lines, and the Large Hadron Collider (LHC). It has been 
already successfully used in 2005 and 2006 to operate the 
Low Energy Ion Ring accelerator (LEIR), SPS and LHC 
transfer lines, replacing the existing old software. This 
paper presents an overview of the architecture, the status 
of current development and future plans. The system is 
entirely written in Java and it is using the Spring 
framework, an open-source lightweight container for Java 
platform, taking advantage of dependency injection (DI), 
aspect oriented programming (AOP) and provided 
services like transactions or remote access. Additionally, 
all LSA applications can run in 2-tier mode as well as in 
3-tier mode; thus the system joins benefits of 3-tier 
architecture with ease of development and testability of 2-
tier applications. Today, the architecture of the system is 
very stable. Nevertheless, there are still several areas 
where the current domain model needs to be extended in 
order to satisfy requirements of LHC operation. 

SYSTEM OVERVIEW 

Scope 
The LSA system covers all of the most important 

aspects of accelerator controls: optics (twiss, machine 
layout), parameters space, settings generation and 
management (generation of functions based on optics, 
functions and scalar values for all parameters), trim 
(coherent modifications of settings, translation from 
physics to hardware parameters), operational exploitation, 
hardware exploitation (equipment control, measurements) 
and beam based measurements [1]. 

One of the main goals of LSA is to provide a clean and 
generic API to all core functionality, to be used by all 
operational applications. 

Basic Concepts 
The whole LSA core functionality is based on a few 

fundamental concepts among which the most important 
are parameter, setting and context [1]. 

Parameter 
Parameters are organized in hierarchies, whose roots 

are usually physics-oriented, high-level parameters (e.g. 
tune, chromaticity, momentum, …). Leaves are typically 
hardware parameters such as currents. Each hierarchy 
describes the relationship between parameters i.e. change 
of one parameter always affects all its dependant 

parameters. Operators typically intervene on the root 
parameters and let the LSA system calculate the 
appropriate changes in the derived parameters.  
 

 
Figure 1: Example of parameters hierarchy where K, I are 
magnet parameters and IREF is the power converter 
current. 

Each parameter is of a specified type which in turn has 
a value type - a function (change of value in time) or a 
discrete type (scalar or array of scalars). 

Context 
A context defines a time span in which a parameter can 

have a value. We define three types of contexts: super 
cycle, cycle and beam process. Super cycle contains a set 
of cycles, which produce beams of different types and for 
different clients. In cycling machines like the SPS, super 
cycles are played repeatedly.  

A beam process defines a specific process of a beam 
(e.g. injection, ramp, extraction) for a given accelerator or 
transfer line. 

Setting 
A setting represents the value of a parameter in a given 

context. Every time a setting of a given parameter is 
modified (trimmed), the change is propagated to all its 
dependants, in the parameter hierarchy. Settings of 
dependant parameters are calculated using so-called make 
rules. 

Architecture 
From the very beginning it was decided that the system 

should have 3-tier architecture [2]. There were several 
reasons for it: central access to the database and 
hardware, central security and caching, reduced network 
traffic and load on client consoles, and scalability.  

Initially LSA architecture was based on Java 2 
Enterprise Edition (J2EE), together with Enterprise Java 
Beans (EJB). However, after having disappointing 
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experiences with EJB standard, LSA team decided to 
replace it with a new solution for enterprise systems 
labelled as lightweight container. As the actual 
implementation of the concept, we have chosen a leading 
container - the Spring framework [3]. 

LSA Architecture 
The LSA architecture is based on three main principles:  

it is modular (each module has high cohesion providing a 
clear API to its functionality), layered (with three isolated 
logical layers – database and hardware access layer, 
business layer, user applications) and distributed (when 
deployed in 3-tier configuration). 

 

 
Figure 2: LSA architecture. 

All applications communicate with the underlying tiers 
in two standard ways, using the Java API for Parameter 
Control (JAPC) [4] for equipment access and the LSA 
Client API to call the business services available in the 
LSA core. 

The current LSA architecture heavily uses standard 
services provided by the Spring framework: 

• Database access is implemented using Spring JDBC 
abstraction layer.  

• Transactions are managed by Spring AOP based 
transactions abstraction.  

• Synchronous remote communication is done through 
Spring HTTP remoting. 

• Testing framework, especially for unit testing of Data 
Access Objects (DAO).  

We have also implemented a caching mechanism with 
annotation-driven configuration, using the method 
interception facility provided by Spring AOP, and in the 
near future we plan to use asynchronous communication 
via Java Messaging Service (JMS), which is also nicely 
integrated in the framework 

2- and 3-tier Deployment 
One of the great assets of the LSA system is that all its 

applications can seamlessly run both in 2 and 3-tier mode. 
The 2-tier mode is vital for development and debugging 
while the 3-tier mode is used for operations. 

Two design principles facilitate this solution: (1) all 
applications do not use directly services provided by LSA 
core modules, but always go through a set of client 
controllers (façades) defined in LSA Client module; (2) 
all these controllers are retrieved using a special service 
registry based on Service Locator pattern. The registry 
returns either an actual implementation of the controller 
(in 2-tier mode) or a dynamically generated HTTP proxy 
which makes a remote call to the server (in 3-tier mode). 

EVOLUTION TOWARD THE LHC 
The initial design of the architecture and the domain 

model was based on requirements for the SPS and its 
transfer lines and on experience with the Large Electron-
Positron (LEP) collider. While the architecture did not 
change significantly for the last 3 years, the data model, 
domain model and functionality provided by LSA core 
modules have been considerably updated and extended to 
address new requirements. 

Parameters Space 
In the beginning, LSA was used only to manage 

function parameters, mainly for SPS power supplies.  
However, in view of LHC, LSA shall be more generic and 
handle settings of all devices in the machine. Therefore 
the LSA parameter space has been extended to support all 
types of parameters, including scalars and scalar arrays of 
any type. While function parameters specify the change of 
a value over time, scalar (and array) parameters describe 
time-independent, punctual value (or an array of values) 
such as the strength of a kick for a LHC injection kicker  
(scalar) or a thresholds table for different levels of energy 
for a LHC beam loss monitor (array of scalars). 

Context and Settings Management 
Unlike SPS or LEIR, the LHC is a non cycling 

machine. The machine run will be composed of a 
sequence of processes such as injection, ramp, squeeze 
that will be executed in an asynchronous way. Some of 
these processes, like ramp, will have a known length and 
settings for them will be managed using regular super 
cycles. The length of other processes, like injection, will 
depend on several conditions (e.g. beam quality) and will 
not be known in advance. In order to support settings 
management for such processes of unknown length, two 
additional concepts have been introduced to describe a 
context: an actual super cycle and a hyper cycle. An 
actual super cycle, as opposed to a regular super cycle, 
does not have a length and it is used only to manage 
scalar settings for such steady state processes.  

A hyper cycle defines a sequence of regular and actual 
super cycles which are used in one run of the LHC.  

Finally, we introduced settings for context-independent 
(called also cycle-independent) parameters whose value 
can be changed independently on the beam type in the 
machine. Cycle-independent parameters usually represent 
thresholds or limits of various devices. 

WOPA03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

308



Security and Access Control 
Due to the very high energy stored in the LHC beam 

and potential damage which could be caused by that, the 
LHC machine has strong security requirements.  

In order to satisfy these requirements, LSA has been 
integrated with two access control infrastructures: Role 
Based Access Control and Management of Critical 
Settings. 

Role Based Access Control (RBAC) 
The RBAC [5, 6] infrastructure has been developed in 

the frame of LHC at FermiLab Software (LAFS) 
collaboration. Its main goal is to prevent accidental and 
unauthorized access to the hardware. It is based on access 
maps which describe access rules for specified user roles 
and hardware properties, taking into account machine 
mode or location of the user sending settings. Verification 
of user credentials against these access maps is performed 
by the Controls Middleware (CMW) [6] at the moment 
when settings are sent to the hardware. 

Management of Critical Settings (MCS) 
The MCS [7] infrastructure has been developed to 

complement RBAC with an additional layer of security. It 
uses digital signatures to protect data integrity of settings 
of the most critical hardware. Usually critical settings will 
be modified by experts and immediately sent to hardware, 
however in some cases settings might be prepared in 
advance by experts, and later on used by machine 
operators. 

The whole MCS infrastructure is composed of three 
components: 

• LSA which enforces authentication when trimming 
critical settings, requests RBAC to sign new values, 
stores new settings together with a digital signature in 
the database and sends them to the hardware (if 
requested). 

• RBAC system, which allows user authentication, 
issues a secure token and signs settings with 
appropriate private key. 

• Front-end Software Architecture (FESA) [8] which 
verifies signature using a public key issued for given 
hardware type. 

LHC Timing 
All processes in the LHC (injection, ramp, squeeze, etc) 

will be synchronized and triggered by timing events sent 
by the LHC timing system [9]. The LSA core provides a 
timing service to send timing events and access the timing 
real-time data channel. The events can be sent 
individually as asynchronous events or structured in 
tables. The latter are persisted in the database and can be 
loaded/unloaded from the timing system. The system 
supports up to 8 concurrent tables containing a maximum 
of 256 events. In addition, the LSA timing service will be 
used for LHC injection requests by high-level 
applications such as the sequencer. 

Hardware Transactions 
One of the key issues when sending settings to many 

devices installed in the LHC ring is the atomicity of that 
operation – either all or none succeeds. The lack of 
transactional behaviour could lead to serious problems or 
even damage caused by the beam. Furthermore all devices 
must be synchronized i.e. start to play loaded settings 
exactly at the same moment. 

To address this requirement a support for hardware 
transactions has been recently implemented in the FESA 
[8] framework. The basic idea behind is that settings sent 
from LSA to the hardware will contain an additional field 
representing a transaction identifier. All settings sent with 
such an identifier will not be played immediately, but will 
wait for a commit. If sending settings to all devices 
succeeds, LSA will request a timing event (sent via the 
LHC timing system) containing the same transaction 
identifier, which will be treated as a commit action. 

CONCLUSIONS 
As the domain is very complex, the project team started 

with a base model which was iteratively extended to 
cover newly coming requirements. After a successful 
deployment of the system for control of transfer lines, 
SPS and LEIR machines two years ago, the LSA team has 
began to work on LHC requirements. Today most of the 
crucial functionality, required for the first beam in LHC, 
is in place and is being tested by machine operators. 
Nevertheless, there are still few areas where current 
domain model can be improved. In addition, several 
specialized applications need to be written and the data 
model has to be completed, therefore the coming months 
will be certainly challenging. 
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