
FRONT-END SOFTWARE ARCHITECTURE

Michel Arruat, Leandro Fernandez, Stephen Jackson, Frank Locci, Jean-Luc Nougaret,
Maciej Peryt, Anastasiya Radeva, Maciej Sobczak, Marc Vanden Eynden

 Accelerators and Beams Department, CERN, Geneva, Switzerland

Abstract

CERN’s Accelerator Controls group launched a project
in 2003 to develop the new CERN accelerator Real-Time
Front-End Software Architecture (FESA) for the LHC
and its injectors. In this paper, we will report on the status
of this project, prior to the imminent start-up of the LHC.
After describing the main concepts and components of the
infrastructure, we will present how we have capitalized on
the different technical choices, by showing the
framework’s flexibility through the new functionalities
recently introduced, such as: Transactions, Diagnostics,
Monitoring, Management of LHC Critical Settings,
communication with PLC devices and Composition. To
conclude we will present the extensions foreseen in the
short term.

FESA

Application Domain
The Application Domain, for which FESA has been

developed, is the real-time software running on front-end
computers at CERN. This software, called equipment
software, provides access to the accelerators’ physical
elements that interact with the beam, by handling
operators’ request (property interface) and dealing
directly with the hardware.

What is FESA?
The Front-End Software Architecture, known as FESA,

is a complete environment for the equipment specialists to
design, develop, deploy and test their equipment software,
called a FESA class. The primary reason to develop such
an infrastructure is to standardize, speed-up and simplify
the task of developing front-end software. The FESA
infrastructure includes the following components:
• Object-oriented Real-Time Framework: a fundamental

technical choice. Instead of providing individual re-
usable components that implement common
functionalities needed by almost all applications
(toolkit and libraries), we decided to focus on the
structure and the flow control of our application
domain, and to capture the outcome of this analysis
into a framework. The goal is to spare the programmer
from having to define the architecture of each new
application, because the framework is the application
for the equipment real-time software domain. The
framework orchestrates the activity, and when
necessary calls the routines provided by the application
developer to provide application-specific behaviour.

• Graphical Tools: developing a FESA class requires the
developer to produce three XML documents: Design,

Deployment and Instantiation. In order to supply them,
the developer uses a graphical application, which is
basically a generic XML editor, configured by
dedicated W3C XML Schemas [1]. These respective
XML Schemas are the following:
o FESA Design Schema: drives the Design tool. It

encodes the meta-model, i.e. the model of all
possible models of equipment software. The FESA
meta-model forces the equipment specialist to think
of an equipment design as a set of conceptual
objects:
- A public Interface, as a collection of
get/set/subscribe properties. Equipment is controlled
through remote invocation of these properties across
the Control system Middleware (CMW [2])
- A device-model, representing the software
abstraction of an underlying hardware device,
composed by a set of fields (data-holder).
- A set of server actions, implementing the
properties get/set services.
- A set of real-time actions transferring data to/from
the hardware device from/to its software device-
instance representation.
- A set of logical events which trigger the
equipment’s real-time activity.
- A set of triggering rules, binding logical events and
real-time actions.

o FESA Deployment Schema: drives the deployment
tool used to deploy a FESA class on a particular
front-end.

o FESA Instantiation Schema: drives the Instantiation
tool, used to configure a set of device instances on a
front-end on which the FESA class is deployed.

• Code generation: the specification of the design in
XML, allows us to automatically generate the
appropriate source code in order to specialize the
framework according to the equipment specific needs.
For this purpose we have used other XML-based
technologies such as XSL (eXtensible Stylesheet
Language) [3]. XSL is a language for creating style
sheets that specify how to transform elements in XML
documents into C++ source files. During the “Fesa
Synchronize” phase, a set of XSL files is applied to the
design XML document, in order to populate the
generated code package and instantiate the skeletons of
the custom actions and Makefiles.

• Test environment: again, relying on the use of XSL,
FESA provides an automatically generated Java GUI
that allows access to every defined property of any
declared device instance.

WOPA04 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

310

The successive steps of a FESA development process are
shown in Figure 1.

Figure 1: successive steps to develop equipment software
using FESA (deployment and instantiation are not
shown).

Equipment Software Reusability
CERN is composed of a chain of accelerators, each of

them having dedicated timing domains that synchronize
all the physical elements according to the characteristics
of the beam circulating in the accelerator. So, even if the
accelerators are composed of the same physical elements
(Magnets, Beam Instrumentation, RF cavities, etc…),
controlled through the same layer of hardware, the
dynamic behaviour of those elements change from one
accelerator to another. To ensure equipment software
portability across CERN accelerators, FESA provides a
complete abstraction of the timing system at several
levels:
• Design: designing equipment software in FESA,

involves defining the scheduling as a set of scheduling-
units, each defining two rules:
o Triggering-rule: specifies the binding between an

event and a real-time action. The event specified in
the design, is a logical event (abstract event), that
will be concretized into a real accelerator timing
event. Each time the equipment software is
deployed, a set of device instances are configured
with their accelerator specific events.

o Device-selector criteria rule: specifies the grouping
criteria to build homogeneous device collections
managed by the real-time action. In terms of timing,
this criterion is: “devices that need to be operated at
the same time in the accelerator cycle”. To this end,
FESA defines a device-interrupt field, in order for
the device instance to specify the timing it is
connected to. In this way, a single triggering rule
binding a logical event to a real-time action, can
produce as many instances of this real-time action as
there are homogeneous groups of devices instances,
resulting from the device-selector.

• Custom code implementation: for each real-time action
class, the equipment-specialist has to implement (in
C++), the body of the “execute(RTEvent*)” method.
The input parameter of this method refers to an

RTEvent object that contains the ‘wake-up’ context by
which the action was triggered. This context, managed
transparently by the framework, contains timing
information related to the accelerator, and is required
as a parameter when the custom code invokes the
device field’s get and set, in order to handle the
multiplexing of settings. (Multiplexing: accelerators
infinitively play a programmable sequence of
successive cycles, called USERs or “Virtual
Accelerators”, based on a basic period (1.2s), and
orchestrated by the timing system, in order to provide
beams for the different destinations. Switching from
one cycle to the next, causes a switch of equipment
setting from one USER to the next).

STATUS REPORT

Are the Results the Expected Ones?
In spite of the huge diversity of devices, such as Beam-

Loss monitors, Kickers, Cryogenic systems, Pick-ups,
etc…, FESA has successfully standardized a high level
language and an object oriented framework to describe
and develop portable (meaning across CERN’s
accelerators) equipment software. FESA reduces the time
spent developing and maintaining equipment software
and brings a strong consistency across all equipment
software deployed over all accelerators at CERN. The
high level language, used to design equipment software,
makes it really easy to understand the structure and the
dynamic behaviour of any equipment software, just by
examining the design-document. The FESA development
environment provides a tool to model equipment
software, and keeping this model and implementation
synchronized.

Managing Extensions, Evolutions
As the cornerstone of the CERN Control system, FESA

must accommodate evolving requirements. These last two
years, we have introduced important new features and this
chapter reports the methodology we have put in place to
make those evolutions straightforward.
• FESA versioning policy: FESA evolution is mainly

driven by requirements coming from Equipment
Groups. Since those partners have their own time
constraints, it’s not possible to force them to follow a
unique FESA release. Hence, we have decided to
maintain three operational releases, which is a good
compromise to force equipment specialist to migrate to
the new version, granting some flexibility in terms of
planning.

• Retrofitting: Each FESA release comes with the
appropriate tool, to retrofit any equipment software
from one FESA version to the new one. This tool, will
automatically patch the design document as well as
developer’s code. These last two years, we have
introduced important changes at all levels (meta-model
and Framework), and we have demonstrated that the
retrofit process is not time consuming nor a source of
pain for the equipment specialist.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WOPA04

Software Technology

311

Main Features Recently Introduced
• FESA class Composition: two types of composition

relationships between FESA classes have been
introduced:
o “Has a”: from FESA class A, you want to have a

reference to a device-instance managed by FESA
class B. You can access it using class B’s interface
(properties).

o “Implements interface”: for complex accelerator
devices, such as RF cavities, equipment specialists
want to decompose them into sub-systems, each
providing a dedicated interface in order to give a
specialized view of the system for different
categories of clients.

• Timing Simulation: is intended to help the
development and testing of equipment software without
hardware timing. From the instantiation tool, the
equipment specialist can simulate any accelerator
timing scheme, in terms of sequence of cycles, and for
each cycle, any sequence of events.

• Run-time diagnostic: the first logging system we
provided was based on levels, borrowed from log4j.
This approach, where debugging messages are filtered
according to the log level trace, has proved lacking in
flexibility. We have decided to move to a “topic-
oriented” diagnostic, in order to have a finer
granularity in the trace options. The framework defines
a series of topics such as “Notification”,
“EventTracking”, “RTActionProfiling,” or
“ServerActionProfiling”... in order to diagnose the
complete control flow of the equipment software. In
addition, the system allows the equipment specialist to
define their own topics, to diagnose precisely the
custom part of his equipment software.

• Monitoring: the purpose of monitoring is to
permanently survey the control flow of any equipment
software in a non intrusive way, and raise an alarm if
something is not working properly. In the context of
the FESA framework, it is straightforward to control
the real-time activity by adding some reference points
in strategic places, in order to detect for instance,
accumulation of real-time events showing clearly that
the custom-code is not able to treat the triggering
events.

• Programmable Logic Controller integration: more and
more accelerator devices are connected to PLC’s.
These industrial systems are connected to a standard
Ethernet network, and have the ability to communicate
with the Front-end using TCP/IP. As PLC
programmers have no desire to deal with Linux, or C++
programming, the integration has to be completely
automated. To this end, we have defined a branch
(“plc-class”) in the FESA meta-model, as a restriction
of a standard class. Using the standard FESA design
tool, the PLC specialist defines the data-structure that
will be exchanged between the PLC and the front-end,
in terms of Acquisitions, Settings, and Configuration.
This design is used to automatically generate the FESA

plc-class (no coding is required), and the data structure
to be downloaded into the PLC.

• Critical Settings Management: with the arrival of LHC,
it has been recognized that some device’s settings are
related to critical parameters of the system, and that the
given value should be validated before actually setting
some property. The technical solution chosen is based
on public-key cryptography and a digital signature. To
this end, we have extended the meta-model to allow the
equipment specialist to flag, in the design, the
properties which are critical. Setting a property marked
as critical, will require a signature that the client has to
provide with the settings data. This new service is
managed transparently by the framework.

• Transaction: this facility guarantees that several
settings acting on different devices deployed on various
front-ends will be all taken in account at the same time,
or none of them in case of an error. FESA transaction is
a two phase commit transaction. The transaction
coordinator sends settings to all the devices involved in
the transaction, and waits until it has a reply from each
of them. If all the devices send an agreement message,
the coordinator asks the timing system to send a
“CommitEvent”. If at least one device failed, an
AbortEvent is sent instead.

All these recent extensions have proven the flexibility,
and the capability of the complete FESA infrastructure to
handle evolution.

Short Term Extensions
For the coming short term (next year), we would like to

investigate some new extensions:
• Hardware integration.
• Composition, versus inheritance, between FESA

classes.
• FESA IDE: building a complete integrated

development environment using the Eclipse platform.

REFERENCES
[1] W3C Schema specification

http://www.w3.org/XML/Schema
[2] “Remote Device Access in the New CERN

Accelerator Controls Middleware”, ICALEPCS’01,
San Jose, California, USA, p. 496.

[3] W3C XSL specification
http://www.w3.org/Style/XSL

[4] Equipment Software Modeling for Accelerator
Controls, ICALEPCS 2005

[5] Use of XML technologies for data-driven accelerator
controls, ICALEPCS 2005

WOPA04 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

312

