
OASIS EVOLUTION

S. Deghaye, L. Bojtar, C. Charrondiere, Y. Georgievskiy, F. Peters, CERN, Geneva, Switzerland.
I. Zharinov, JINR, Dubna, Russia.

Abstract
OASIS, the Open Analogue Signal Information System,

was fully deployed in 2006 and now allows observation
of more than 1900 analogue signals in the CERN
accelerator complex. Our first operational experience in
2005 indicated that, for performance reasons, a change in
the technology used to access the database was needed.
Further experience throughout 2006 showed that an even
bigger move was required in order to keep the system
easy to maintain and improve. Initially based on the J2EE
Enterprise Java Beans (EJB) and Java Messaging Service
(JMS), the OASIS server was tightly coupled to OC4J,
the Oracle’s EJB container, and SonicMQ, a JMS broker.
The upgrade to the latest version of these products being
unnecessary complex and the architectural constrains
being major drawbacks of the EJBs, it was decided to
move completely away from those. The paper presents the
new server architecture based on open-source products –
Spring, ActiveMQ & Hibernate. It also presents the
improvements done to the user request processing in
order to reduce drastically the response time. Finally, the
concept of Virtual Signal is introduced along with the new
scalability constrain it brings into the system.

SYSTEM OVERVIEW
OASIS is a system for the acquisition and display of

analogue signals in the accelerator domain. The signals,
distributed all around the accelerators, are digitalised by
oscilloscopes sitting in front-end computers (FEC). The
acquired data is sent through the Ethernet network and
displayed on a workstation running a specific application,
the OASIS viewer. When the bandwidth requirement
allows it, the analogue signals are multiplexed by
analogue matrices which are connected to the
oscilloscope channels. This scheme takes into account the
fact that not all the available signals are observed at the
same time and allows us to save some digitisers, the most
expensive devices in the system. The FECs are installed
next to the signal sources in order to preserve the signal
integrity as much as possible.

OASIS has two main tasks. It has to manage the
resources, namely the oscilloscopes, and to provide the
Virtual oscilloscope abstraction (Vscope). Here, resource
management means to affect oscilloscopes to connections
in a way that maximises the number of concurrent
acquisitions. A Vscope is a software oscilloscope that
takes its data from different hardware modules and
displays it as if it came from the same module. Thanks to
this scheme, we are able to observe several signals as if
they were next to each other while they are actually
distant from hundreds of meters. Of course, for this to
work, we need to have the same trigger pulse and OASIS

must keep in synchronisation the acquisition settings used
by the different connections belonging to the same
Vscope.

OASIS is based on a three-tier architecture. The front-
end tier, the lowest one, has the responsibility to handle
the hardware, the digitizer and the multiplexer modules. It
provides a hardware independent interface [1] to the
upper tiers. The application server (middle tier) manages
the resources provided by the front-end interface and
assigns them to the connections requested by the clients.
In addition, it implements the Vscopes abstraction and
controls the associated acquisition settings to keep them
coherent and give the virtual oscilloscope image. The
application tier is the tip of the iceberg and provides to the
users a light-weight Graphical User Interface (GUI) and
Java API to interact with the system.

ARCHITECTURE ‘06
Picture 1 shows the two upper tiers of the system along

with the main technologies used at that time.

Figure 1: OASIS upper tiers - 2006 version.

The server part ran in an Oracle J2EE container
(OC4J). The communication with the application tier was
based on RMI and JMS depending on whether the call
needed to be blocking or not. For the RMI
communication, we had session beans while message
driven beans (MDB) were used to handle JMS messages
sent through the JMS broker, SonicMQ. Persistence was
hidden behind entity beans and the transactions to access
the database were demarcated declaratively using the
J2EE descriptor files. More details on that version of the
system can be found in [2] and [3].

Performance Problems
Quickly after the first release and 24/7 operation of the

system, we found out some actions had very poor
performance. For example, the connection of a predefined
12 signal configuration took between 40 and 50 seconds.
After investigation, it turned out just reading the

WPPA04 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Control System Evolution

322

configuration from the database was extremely slow
(typically 15 seconds [2]).

As a first set of actions, we tried to change the database
connection settings, the timeouts and the isolation level
trying to avoid as many database round-trip as possible.
The results were still below user expectation. The second
step was more radical since we decided to change the
persistence layer and replace the entity beans by
Hibernate, an Object/Relational Mapping (ORM) service
[4]. The performance improved greatly with a reduction
by factor 40 of the time needed to retrieve a stored
configuration. From the user point of view, that change
reduced the connection time by almost a factor 4 - from
50 seconds to 15 seconds for 12 signals. In addition,
Hibernate proved to be much simpler than the entity
beans. Indeed, only one Java class and one mapping
description file are needed and the mapping can be
generated from Javadoc comments. The possibility to use
persistent objects directly on the client side was also seen
as an advantage since less cumbersome Data Transfer
Objects (DTO) were required.

Stability & intenance Problems
Unfortunately, we discovered during the 2006 run that

the introduction of Hibernate had also destabilised the
whole system and we experienced several server crashes
per day. The main reasons were concurrency problems
and, to a lesser extend, version problems between the
third party components we were using. The crashes would
not have been too much of a problem, since that resulted
in a service unavailability for 30 seconds once or twice a
day, if it was not for the half committed transactions,
corrupting completely the database, they were leaving
from time to time.

While trying to move all the components to their latest
version, we hit several difficulties. Going from the antic
version of OC4J to the latest version required from us a
big investment to understand all the configuration files
and various possibilities. Furthermore, the embedded
services in the container were incompatible with CERN
made components such as Control MiddleWare (CMW),
a CORBA based middleware. SonicMQ also turned out to
be unnecessarily complex to install and configure and the
features we really needed were not justifying the licence
cost. All those components were not well adapted to our
needs. Therefore, we decided to change the infrastructure
and to move to lightweight and possibly free solutions.

ARCHITECTURE ‘07
The selection of the new components was strongly

influenced by the industry trends of that time. EJB was
more and more disregarded as a valid solution mainly due
to the undue complexity it brought and so-called
lightweight containers were taking more and more
importance. We decided to replace the OC4J container by
one of the leading solutions, Spring [5]. The session &
message driven beans were replaced by standard Java
classes plus the Spring remoting facility. Hibernate has

been kept for the persistence. SonicMQ was also replaced
by ActiveMQ [6] which has the big advantages to be free,
easy to install (unzip & run) and easy to configure. We
also took the opportunity given by this refactoring to
move to Java 6.

Figure 2: OASIS upper tiers - 2007 version

Persistence yer
The port of the entity beans to Hibernate was already

done but we had now the possibility to use the Hibernate
Spring integration. This, combined with the possibilities
brought by Java 6 and the annotations, simplified greatly
the code. Annotations are used to describe the mapping
between the Java classes and the database tables (no XML
file anymore). The transaction demarcations, also based
on annotations, can affect any method of any Spring
managed bean giving us a better granularity.

Server Deployment
The server is now deployed as a stand alone Java

Virtual Machine. There is no need any more to package
the classes in special files (EAR) along with deployment
descriptors. ActiveMQ being written in Java, it offers to
possibility to be embedded in the server process. It is also
a simplification since it is one less process to start and to
look after.

Performance provements
Several Java technologies were used to solve

performance problems.
RMI was replaced by Lingo, a specialised JMS-based

remote method invocation framework, which allows
asynchronous calls. Use of the latter feature resulted in
decreasing unnecessary wait time in case of non-returning
methods. For example, disconnecting 12 signals is now
immediate from the user point of view.

Given that OASIS is a multi-client software, several
hints were also implemented to parallelise execution of
non-interfering operations. A task thread pools per client
is created and, thanks to Lingo, remote method
invocations are treated as tasks. The result is a reduced
wait time for consecutive calls from multiple clients and
long operations made of several independent parts. For
example, connecting a configuration made of three
independent 4-trace Vscopes take only 4-5 seconds
compared to the 40-50 seconds of the first version.

Ma

La

Im

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPA04

Control System Evolution

323

Finally, the JMS topic structure has been rewritten
which significantly reduced memory consumption and
number of threads per client, especially in cases of clients
with many connections.

OPERATION
The new version of the system with all the

modifications was released early March for the 2007
machine start-up. Since then, everything has been very
stable except for some small FEC communication
problems that oblige us to restart the application server
every month. In August 06, we introduced a connection
statistics feature and, as one can see on figure 3, with
roughly 40’000 connection request per year, the system is
well used. 1.2 % of the connection requests resulted in a
situation unsolvable by the server. The 2839 connection
requests leading to a ‘no free channel’ result could be
reduced by adding more digitisers but as it is described in
the next section, we wait for cheaper hardware for that.

34195

2276
2839 426

Succesful

Slave mode

No free channel

Error

Figure 3: Connection requests from 09-2006 to 09-2007.

ONGOING DEVELOPMENTS

ADC tegration
The first phase of the project was to provide an open

system for analogue signal observation with digitisers and
there was already around one hundreds 1GSa/s digitisers
installed. In order to reduce the cost per signal, the
integration of modules with fewer oscilloscope-like
features (no sensibility, no offset…) has started. As a test
bed, we chose the SIS3320 [9] which is a 200 MSa/s 8-
channel VME ADC. We are also studying the
introduction of low sampling rate PCI digitisers - from
200 kSa/s to 1 MSa/s. In parallel, the integration of
dedicated acquisition systems is also going on with for
example the LEIR low-level RF digital system and the
BPM acquisition system built for the CLIC Test Facility 3
(CTF3) by a LAPP/CERN collaboration [8].

Virtual Signals
With the current version of the system, anyone on the

CERN technical Ethernet network can look at any of the
2000 available signals if he was next to the source with a

standard oscilloscope. While that has proved extremely
useful, it would be interesting to, first, observe the signals
in their real units e.g. Amperes, millimetre… and, second,
observe signals that are actually the result of a
computation on several real analogue signals – what we
call a Virtual Signal. Support for signal unit, scaling
factor and offset is done and should released soon.

Full virtual signal support is under development and
requires modifications at all levels. Since the computation
on the waveforms is CPU intensive, a scalable schema is
required in order to support tens or even hundreds of
virtual signals. The front-end tier being the less loaded
part of the system and also the easiest to extend with
additional CPUs, we are developing a virtual signal front-
end component to perform the computation. This
component is a class developed with the CERN Front-
End Software Architecture (FESA) [10]. On the server
side, several routing algorithm changes are needed.
Indeed, on reception of a virtual signal connection
request, the server has to decompose the signal into
concrete signals (and this can be recursive) and to connect
the concrete signals to available channels. Then, the
server has to inform the virtual signal FESA class of the
data sources to be used to retrieve the acquired
waveforms and perform the computation.

CONCLUSIONS
After a first year of operation, we learnt a lot on the

system we did the necessary modifications to have the
required system availability. The revised architecture has
been running for a year without major problems and with
about 40000 connection requests per year, the system is
heavily used. A second phase of the project has started
with the aim of reducing signal cost and providing the
possibilities to the operation to observe high level
machine signals.

REFERENCES
[1] S. Deghaye et al., “Hardware Abstraction Layer in

OASIS”, Geneva, Switzerland, October 2005.
[2] S. Deghaye et al., “OASIS: a new system to acquire

and display the analog signals for LHC”,
ICALEPCS’03, Gyeongiu, Korea, October 2003.

[3] S. Deghaye et al., “OASIS: Status report”, Geneva,
Switzerland, October 2005.

[4] http: //www. hibernate. org/
[5] http://www. springframework. org/
[6] http: //activemq. apache. org/
[7] http://lingo. codehaus. org/
[8] http://www. struck. de/sis3320. htm
[9] L. Bellier et al., “CTF3 BPM Acquisition System”,

these proceedings.
[10] A. Guerrero et al., “CERN Front-end Software

Architecture for accelerator controls”,
ICALEPCS’03, Korea, October 2003.

In

WPPA04 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Control System Evolution

324

