
ORNL/SNS is managed by UT-Battelle, LLC, for the U.S.

Department of Energy under contract DE-AC05-00OR22725.

*This work was supported in part by the Department of Energy
contract DE-AC02-76SF00515.

INTRODUCING CAML II

Thomas Pelaia II, ORNL
★
, Oak Ridge, TN 37831 U.S.A.

Matthew Boyes, SLAC , Menlo Park, CA 94025 U.S.A.

Abstract
Channel Access Markup Language (CAML) is a XML

based markup language and implementation for

displaying EPICS channel access controls within a web

browser. The CAML II project expanded upon the work

of CAML I adding more features and greater integration

with other web technologies. The most dramatic new

feature introduced in CAML II is the introduction of a

namespace so CAML controls can be embedded within

XHTML documents. A repetition template with macro

substitution allows for rapid coding of arbitrary XHTML

repetitions. Enhancements have been made to several

controls including more powerful plotting options.

Advanced formatting options were introduced for text

controls. Virtual process variables allow for custom

calculations. An EDL to CAML translator eases the

transition from EDM screens to CAML pages.

INTRODUCTION

Channel Access Markup Language (CAML) [1] is a

declarative XML based language and implementation for

displaying EPICS [2] channel access controls within a

web browser. CAML uses the WebCA [3] plugin to

handle the channel access communication. Initially,

CAML was a standalone pure XML specification which

included both layout and controls. This approach made it

difficult to integrate HTML content and it also limited the

layout to the few options that were implemented directly

in CAML.

The most significant feature for CAML II is support for

XHTML which assigns CAML elements a namespace and

allows them to be mixed with other XHTML constructs.

Other new features include new and enhanced controls,

advanced formatting options, virtual process variable

support and an EDL [4] to CAML translator.

CAML ARCHITECTURE

CAML consists of a XML specification and

namespace, stylesheet transform, controls library and the

WebCA plugin. A CAML document is written in

XHTML and allows for any combination of HTML,

CAML and other XML code. The CAML namespace

allows CAML elements to be uniquely identified through

the “caml:” prefix. This allows CAML controls to be

embedded within an HTML layout.

When a web page containing CAML is loaded, the

browser’s XSL transformer parses the document

according to the specified CAML XSLT which identifies

CAML elements, parses their attributes and substitutes

each element in place with corresponding HTML, CSS,

SVG and JavaScript to render the control and wire it for

channel access events. The document also loads the

WebCA plugin which handles the native channel access

communication. The page is then presented the user

within the web browser as shown, for example, in

Figure 1.

Figure 1: Sample page with CAML controls.

All required web technologies are covered by open

specifications and supported by all major standards

compliant web browsers including Firefox, Safari, Opera

and Chrome. Specifically, we have tested CAML on

Safari and Firefox. One or more of these targeted web

browsers is available on each of the major operating

systems (Linux, Mac OS X, Windows).

Motivation

While many options exist for building channel access

applications using high level languages, it is desirable to

offer a modern declarative language for rendering

controls that is also platform independent. XML is a

natural choice for building a modern declarative language

due to its wide adoption and availability of supporting

tools. Web browsers make a natural choice as a display

manager due to their wide adoption, support of rich media

and adherence to cross platform standards. Particularly,

the HTML 5 WHATWG [5] specification has empowered

web browsers with new capabilities such as the canvas

element for 2D graphics, built in client side database and

more. Recently, JavaScript engines have gained

FRA001 Proceedings of ICALEPCS2009, Kobe, Japan

Web Technology

922

significant performance improvements [6, 7] and CSS

now offers very rich styles and layout control.

Clearly web browser vendors are committed to

advancing capabilities and improving performance.

Given the powerful platform independent capabilities of

modern web browsers, the ability to render XHTML

documents and their wide availability, this makes the web

browser an ideal platform for rendering controls using a

XML specification such as CAML as the declarative

language.

CAML ELEMENTS

CAML defines several elements that correspond to

channel access controls, and other specialized elements.

Each element supports attributes for configuration (e.g.

the associated process variable for reading or writing). A

default style sheet allows for a common look and feel to

be applied to CAML elements across all web pages. For

example, you can specify a text style such as background

or foreground color to indicate alarm status.

Channel Access Controls

Table 1 shows the currently supported channel access

controls grouped by type. Text, incremental and gauge

controls allow for custom formatting of the string

representation of associated events including value,

status, severity and/or time stamp. For controls that

support writing, a visual cue indicates whether write

access is granted for the specified process variable and the

control is accordingly enabled or disabled.

Table 1: CAML Controls

Type Controls

Enumerated Menu, Radio, Toggle Button, Bit/LED

Incremental Slider, Wheel Switch

Text Text Entry, Text Update

Plotting 2D Scatter, Line, Strip, Bar, Waterfall,
Intensity

Meter Gauge

Every control has a contextual menu accessible through

a right click on the control. The contextual menu has

options to inspect the associated process variable

attributes, copy the process variable address, copy the

current value and record and display the recent history of

the process variable. Unfortunately, the contextual menu

can obscure the contextual menu which many browsers

already have and the contextual menu doesn’t provide the

flexibility that is needed for many elements (e.g. those

with more than one process variable). A better alternative

is to replace the contextual menu with a control inspector

accessible through a small “i” button that appears only

when the mouse hovers over the control.

Several plot types are supported, but generally plot

performance is poor and the plot options are limited as

most plots were not designed specifically for CAML or

rapid update. Our own work with plotting indicates that

we can obtain high performance plots if we code the plots

ourselves. Also, we are confident we can make the plots

more feature rich without sacrificing performance.

Virtual Process Variables

CAML supports the definition of virtual process

variables that exist within the context of the current web

page. A virtual process variable can execute arbitrary

JavaScript that can operate on any number of real process

variable values (at the time of execution) without having

to make any direct channel access calls. A virtual process

variable can be used with any CAML control that takes a

process variable as a property.

Repetition

Frequently, one wishes to display a repeated block of

code such as a table row or list item in which some data

varies adhering to a common pattern. CAML provides a

solution for this scenario through repetition with

substitution. CAML defines a repetition element within

which one includes a template element and a list element.

The template element can contain arbitrary XHTML with

references to named macros. The list element contains an

item element for each record of repetition. The item

element can define one or more named macro value pairs.

For each item in the repetition list, the template is

evaluated with the associated named macros substituted

with its corresponding value in the current item.

EDL TO CAML TRANSLATOR

CAML ships with an EDL to CAML Translator to

translate EDM pages to CAML. The translator is written

in Java; however, we would like to port this to run as a

script to avoid the overhead associated with Java. The

translator does a good job of translating most controls but

has limitations. For example, the translator doesn’t

translate background colors or images. Figure 2 shows an

actual EDM screen used at SNS, and Figure 3 shows this

screen translated into a CAML page.

Figure 2: Original EDM screen.

Proceedings of ICALEPCS2009, Kobe, Japan FRA001

Web Technology

923

Figure 3: CAML page translated from EDM.

EDM supports absolute layout of elements, so the

translator also attempts to generate CAML code with

absolute layout. However, since CAML uses HTML for

element layout and HTML allows for (and more typically

uses) dynamic layout, it is advisable to modify the

resulting CAML code for a more natural and consistent

user experience on the browser platform.

WEB CA PLUGIN

Web CA is a browser plugin that provides a JavaScript

API for several channel access client functions and makes

calls through the native channel access client libraries.

When writing CAML pages, one does not typically

interact directly with the plugin. Rather, calls to the

plugin are generated automatically by the stylesheet

transformation. Common channel access functions on

process variables which are supported are monitor with

callback, get with callback, put with callback and fetching

information such as access rights.

Obtaining and configuring this plugin is often the

biggest obstacle to adopting CAML. A channel access

installer for Mac OS X 10.5 and later includes the plugin

with support for both 32 and 64 bit web browsers. A Web

CA plugin installer for Windows installs the CA Repeater

and the plugin for Firefox and Safari and configures the

channel access environment.

We would like to improve the plugin to avoid

configuration. The author of hosted web pages should

know the channel access configuration information, so we

would like to modify the plugin to support channel access

environment configuration within the web page.

Furthermore, we must address potential security issues in

which a remote website may host pages which load the

plugin and make channel access calls. Also, the plugin is

not the best option for all users, and in particular office

users would like to access CAML pages without having to

install and configure the plugin. To address this

requirement, we would like to develop a web service

which provides channel access readonly access as a

fallback when the plugin has not been installed.

CURRENT SIGNIFICANT EFFORTS

Recently, SNS and LCLS have begun working together

to advance the CAML project. As mentioned previously,

we would like to improve plotting performance and add

more plotting options. We intend to develop a CAML

element inspector to replace the current contextual menu.

We must address security concerns with the Web CA

plugin. Also, we are working to provide a zero

configuration alternative to the plugin for office users.

OBTAINING CAML

Please visit our CAML website,

http://www.ornl.gov/~t6p/Main/CAML.html, to learn

more about CAML, subscribe to the newsfeed and

download CAML and the Web CA plugin.

ACKNOWLEDGEMENTS

The authors are grateful for the work of Matej

Sekoranja and his Cosylab team who developed and

implemented both CAML and the WebCA plugin under

contract for the Controls Group at the Spallation Neutron

Source in Oak Ridge. Also we would like to thank Vidya

Kumar and David Purcell for their contributions to

CAML and WebCA.

REFERENCES

[1] Thomas Pelaia II, “CAML and Web CA Status”,

EPICS Collaboration Meeting, Legnaro, Italy, 2008;

http://agenda.infn.it/getFile.py/access?contribId=10

&resId=0&materialId=paper&confId

=715.

[2] http://www.aps.anl.gov/epics/

[3] Thomas Pelaia II, “EPICS With Cocoa”, EPICS

Collaboration Meeting, Argonne, IL, 2006; Slide 14

of http://www.aps.anl.gov/epics/meetings/2006-

06/Infrastructure/EPICS_with_Cocoa.pdf

[4] http://ics-web.sns.ornl.gov/edm/index.php

[5] http://www.whatwg.org/

[6] http://webkit.org/blog/214/introducing-squirrelfish-

extreme/

[7] http://arstechnica.com/open-

source/news/2008/08/firefox-to-get-massive-

javascript-performance-boost.ars

FRA001 Proceedings of ICALEPCS2009, Kobe, Japan

Web Technology

924

