
EVOLUTION OF THE FLASH DAQ SYSTEM

A. Agababyan, G. Grygiel, O. Hensler, R. Kammering, V. Kocharyan, L. Petrosyan, K. Rehlich, V.
Rybnikov, T. Wilksen#, DESY, Hamburg, Germany

Abstract
The Data Acquisition System at the Free-Electron-

Laser Hamburg (FLASH) has evolved since its
implementation in 2005 into a reliable and versatile
system, used for accelerator operations and studies along
with a multitude of different photon experiment users,
recording about 14 TB in 2008 for experiments only.
Recently the DAQ system has been successfully upgraded
with new hardware to accommodate increasing demands
of beam line experiments, upcoming R&D work at
FLASH i.e. for the ILC, and to prepare for the upgrade of
the FLASH facility this year.

This paper describes the evolution of and experiences
with the FLASH DAQ and highlights the key elements of
its design to facilitate an expandable yet easily to
duplicate system implementation.

MOTIVATION

The Free-Electron-Laser at Hamburg (FLASH) is the
successor to the TESLA test facility (TTF) and the TTF
VUV-FEL, which had been operated until 2002. FLASH
has been designed to be used not only as a source for
pulsed laser light in the extreme ultraviolet and soft X-ray
regime, but also as a test bed for exploring new
superconducting accelerator technologies for the
European XFEL and the International Linear Collider.

Therefore a FLASH control system has to serve two
communities - accelerator physicists and photon scientists
- using the facility in quite different ways. It has to ensure
stable and reliable production running for users on the one
hand, and on the other, provide enough flexibility for
frequent modifications of the beam line stations and their
experimental setup. Accelerator R&D work needs usually
exclusive use of the facility for dedicated study time.
Properly recording and documenting the machine status
as well as configurations throughout the R&D time
should accompany this. To support all these demands, a
data acquisition system (DAQ) has been integrated into
the DOOCS-based control system [1], [2].

The DAQ system has to handle a large amount of data
coming from the accelerator control and diagnostics
devices as well as from the user experiments. It has to
acquire and store all relevant information needed for
accelerator operations, R&D work and photon beam
experiments. More important has been the integration of
accelerator and user experiment information to enable
data analysis across machine and experiment. This can
only be done, by synchronizing the various data sources.
A timestamp might not be sufficient when looking at
bunch-by-bunch information ore even at individual
bunches. Tools and applications have to be provided for

retrieving and processing the recorded data.

BASIC CONCEPTS

The above mentioned requirements and specifications
resulted in the following key concepts while designing the
DAQ system.

Bunch-Synchronized Data

Data from the VME-based ADC, with sampling rates at
1 MHz up to 2 GHz, is sent via multicast protocol to a
fast collector. This is called the fast channel data because
the ADC data sampling and collection is triggered with
every macro pulse or shot. This kind of data is usually a
spectra type with up to 2048 measurements, respectively
for the newer ! TCA platform with up to 64k data points.

Slow channel data can be either collected from slow
ADC or any other data source with slowly or rarely
varying information. It is fed into a separate slow
collector process typically at a 1 Hz update rate.

Every data collected from the fast channels is
synchronized to a macro pulse or shot. This is done by
providing an event identification number, distributed via
the timing system and attached to the corresponding ADC
server data. Slow data is collected by a central slow
collector process and then sorted by timestamp if there’s
no event id available. Eventually the slow collector tags
the slow events correctly with the corresponding event id.
Thus, any data for a given macro pulse and its individual
bunches can be easily correlated with each other, even
among slow and fast data, via the event id.

Centralized Shared Memory

A buffer manager [3] - using up to 32 Gbyte of shared
memory - keeps a buffer of synchronized data for each
event id. The shared memory has a slot-like structure
where fast and slow collector can write the various front-
end server data they received. All the data blocks,
belonging to a given event id, are kept in shared memory
until the full event record is assembled, then either holds
it for subscribed clients, or sends it off to the distributor
and event writer processes for writing the raw data files.
The fast and slow collector fill up the shared memory
slots, whenever receiving data from the front ends. Any
clients, using the buffer manager interface, can read event
data from the shared memory, as well as they can write
and add additional data to the existing event record before
it will be processed further.

This feature enables so-called middle layer servers,
which can access data not only directly from the front-
ends but from shared memory, process it e.g. do
computations, and put back the result into memory for
storing it together with the original event data. It is
furthermore available for middle layer applications and

__
#Tim.Wilksen@desy.de

Proceedings of ICALEPCS2009, Kobe, Japan MOD004

Control System Evolution

37

can be utilized for slow, software-implemented, feedback
loops and other monitoring purposes, requiring more
complicated calculations.

Scalable and Extensible Architecture

To accommodate the rapidly changing nature of an
R&D machine as well as to allow for frequent changes of
the beam line experiments and their equipment, the DAQ
was designed to be extensible and scalable. It is possible,
to run several instances of a DAQ including data
collectors, buffer manager, distributors and middle layer
servers either concurrently on one node or on separate
machines.

Data streams can be used for separating experiment
data from machine data or from any other experiments
and even device groups. Streams will produce individual
sets of raw data files containing only the configured
subset of the available data.

A HEP-style run control and configuration database
(ORACLE RDB) is used for configuring DAQ processes
and any DAQ-related front-end device parameters. This
allows for dedicated and individual configurations of
DAQ instances. Each instance has its own run control and
can thus be operated independently.

Figure 1: FLASH DAQ data flow.

EVOLUTION

The FLASH facility is now operating since August 2005.
Since day one a basic DAQ implementation with two
streams for the linear accelerator and one for a user
experiment were present and running. Meanwhile the
overall system has been significantly enhanced and
upgraded. A few of the experiences will be highlighted in
the following.

Evolution - Data

The FLASH DAQ produces currently about 1 Tbyte per
day. This data is being written to a large area on the
storage node and kept for at least 2 to 4 weeks. It migrates
slowly off disk if there are not any requests by the
accelerator physicists or experts to keep dedicated runs.
Being kept on disk however and routinely written to tape
via dCache, is data from the photon beam line
experiments, photon diagnostics data, specific data from

accelerator experiments - e.g. the electro-optic sampling
device – and data for R&D accelerator studies.

At the moment the rate of 1 Tbyte per day can be
handled fine, even after the upgrade to sFLASH, the data
production rate will be of the same order. To be prepared
for storing larger data amounts for some time as well as to
allow for scalability and redundancy, the original DAQ
storage cluster has been recently upgraded. Essentially the
two storage nodes have been doubled and provide now a
total of 60 Tbytes free disk space for the migration pool
alone.

Figure 2: Data collected on tape since 2005 in TBytes.

Evolution - Scalability and Extensibility

Not only the storage node hardware has been upgraded,
but also the worker nodes are doubled now. This gives
some redundancy, because due to its design, it is possible
to run the main and other DAQ instances on any other
node within the FLASH cluster. Both worker nodes are
configured, so that either one could run the main DAQ
system. This feature came in handy this year, after CPU
units on the original machine failed, and the new node
had to take over.

Furthermore, it is relatively simple, to add another
DAQ instance by using a script for cloning. One has still
to set up the run configuration control and adjust run
parameters via a Java-based GUI, but that is basically all
to it. This had to be done multiple times since the original
layout. Mostly beam experiments started to utilize new
beam line stations, but also R&D work required some
dedicated instances. In total, FLASH runs four instances
now.

As another measure for redundancy, we introduced a
backup DAQ instance for photon diagnostics information.
These are crucial for user and their analysis so we
installed another DAQ, running independently from the
main instance and records the same photon diagnostics
subset data, writes it to disk and the to dCache.

Because of the overall R&D nature, lots of devices
have been modified or added to the DAQ as shown in
Figure 3. For known and supported hardware channels
can be added quickly to existing run configuration, its
parameters adjusted, and the DAQ restarted within in
minutes.

MOD004 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

38

Figure 3: Number of fast (blue), slow (orange) and
channels produced by middle layer servers (grey) since
2005.

EXPERIENCES

Tools and Applications = Acceptance?

A crucial question whether a data acquisition system
and its framework would be accepted by the different user
communities, was, whether sufficient tools and
applications were available at start-up time and during the
course of operations.

Clearly, the heterogeneous environment consisting of
operators, accelerator physicists, experts and photon beam
experiment users has been quite a challenge. Accelerator
physicists have been interested since start up, but have not
explored the full potential, yet. They want either ready-to-
go applications or a known framework to write some
(MATLAB) on their own.

On the other hand, FLASH just recently performed
three sets of ILC R&D runs, the last one with long pulses
and high-beam current, which did utilize the DAQ fully.
18.4 Tbyte of data for these ILC studies had been
recorded.

The other big community showed most interest in using
the DAQ is the photon science one. Their quite different
work habits and methodology match more the HEP-style
design of the FLASH DAQ. The initial attempt to use
ROOT for data browsing and as an analysis framework,
gained some traction within this community, but
eventually that approach was dropped. It did lack
performance for I/O and needed still a lot of work to set
up standard tools in ROOT.

Initially an easy-to-use data browser for identifying
relevant data was missing. Meanwhile Java-based tools,
based on DOOCS have been created. A newly set up data
server cluster provides access to all data on disk via TCP.
Interfaces to MATLAB, JDDD, Java-based browser and
C/C++ libraries are available.

Experience - File Format

When designing the DAQ, the initial file format was
based on ROOT: it promised good compression (GZIP)
and a highly flexible C++ analysis framework in HEP-
style. However, when using tree-based internal structure
with many different channel types, a poor performance in

writing files was observed. Event writer processes could
not write faster than 8 Mbytes/s to disk.

After investigating other existing solutions, we ended
up creating our own raw data format, based on the ZLIB
compression algorithm (or alternatively LZO). This
shows rates at 58 Mbytes/s via NFS. Reading an event
takes 200 μs up to 700 μs.

Experience - Middle Layer Servers

Middle layer servers became crucial for operation over
time. They are used for slow feedback purposes and other
applications. One can plug in any MATLAB routine or
C/C++ code for computations, configure necessary input
parameters (via GUI) and output parameters. Examples of
middle layer servers, without FLASH would not be fully
operable anymore, are: energy measurement, photon
wavelength and photon energy measurement, gas monitor
detector, LLRF server for high-level LLRF data
processing, a quench detection server and an orbit server.
Currently a lot of work is spent on enhancing the
interfaces between DOOCS server and the buffer manager
to improve responsiveness and robustness.

CONCLUSION

The design of the FLASH DAQ has shown to be a
powerful concept and a proven architecture in general.
Running reliably since 2005 for accelerator and photon
science community and its experiments, it has become
crucial for operations. Applications turned out to be an
important factor and dependent on the community work
habits to be accepted as useful tool. More applications are
needed, especially, those implementing automated
procedures.

Most recently the FLASH DAQ has been used with
great success for ILC R&D work in 2008 and 2009 –
about 18 Tbyte of data have been recorded to support the
analysis. Thus, the basic concepts seem to be right,
though tools and data storage need more evaluation
especially in the view of the upcoming European XFEL
project.

REFERENCES

[1] G. Grygiel, O. Hensler, K. Rehlich, “DOOCS: A
Distributed Object-Oriented Control System on PCs
and Workstations”, PCaPAC ‘06, Hamburg,
Germany, 2006, see http://doocs.desy.de.

[2] A.Agababyan, et al, “Multi-Processor Based Fast
Data Acquisition for a Free Electron Laser and
Experiments”, IEEE Transactions on Nuclear
Science, Vol. 55, No.1, February 2007, p. 256.

[3] V. Rybnikov et al, “Buffer Manager Implementation
for the FLASH Data Acquisition System”,
Proceedings of PCaPAC 2008, Ljubljana, Slovenia,
2008, p. 102.

Proceedings of ICALEPCS2009, Kobe, Japan MOD004

Control System Evolution

39

