
EVOLUTION OF THE EPICS CHANNEL ACCESS PROTOCOL

K. Žagar*, M. Šekoranja, Cosylab d.d., Ljubljana, Slovenia
M. R. Kraimer#, ANL, Argonne, Illinois, USA

L.B. Dalesio, BNL, Upton, Long Island, New York, USA

Abstract
Experimental Physics and Industrial Control System

(EPICS) is one of the most widely deployed control
system infrastructures in the large experimental physics
community. At EPICS' foundation are 1) the real-time
process database, which allows integrators to build the
control system from reusable building blocks (e.g., device
drivers) into a coherent whole without much coding or
other kind of development, and 2) the Channel Access
protocol, which allows the database to be distributed
across several computers in a scalable way. In this
contribution, we describe the objectives of the next major
EPICS release (v4). In particular, we focus on the
improvements of the Channel Access protocol that will
allow it to support additional functionality, such as
structured process variable data (pvData) and client-
specified filters. We also describe how this functionality is
implemented while simultaneously further improving the
Channel Access' performance (no-copy get, flow control
improvements, beacon traffic reduction, zero-length
queues, etc.). We also discuss potential for future
improvements, such as use of IP multicast and a layer for
implementing remote-procedure call style of
communication.

INTRODUCTION
EPICS [1] is a software framework for development of

distributed control systems. At its core is the concept of a
process variable, which represents either an input (e.g., a
readout from a digital input) or an output (e.g., a reference
setpoint for an analog output).

Process variables are modelled as records, which
contain several fields, each having a name, type and well-
defined meaning. E.g., the VAL field is the value of the
process variable, STAT the current alarm status, etc.

 Records can be processed. When a record is processed,
it may take some data from other records’ fields (via
links), perform data acquisition from hardware, send
commands to hardware, change the value of its fields, and
trigger processing of other records that are linked to it.

EPICS provides for so called soft records, which do not
have any physical device assigned to them, but can
perform operations on data obtained from their input links
and update their value as required – triggering processing
along their output links. This allows for implementation
of (soft) real-time control loops, control sequences, etc.

EPICS also has provisions for development of client
applications such as human-machine interfaces and
central services (e.g., archiving). These applications are

able to read field values of fields (get), or send values to
fields (put).

As client applications and process variables are usually
not on the same computer, a middleware layer is provided
that makes the communication between nodes across
network links transparent. This is the role of the Channel
Access (CA) protocol.

The CA protocol has a server-side component (the CA
Server) and its client-side counterpart (the CA Client) –
see Figure 1. The CA Server brokers requests received
across the network to the locally hosted records. The CA
Client locates fields across the network (using UDP
broadcasts) and transfers data to/from them via so-called
channels across TCP connections.

Figure 1: Architecture and data flows in EPICS.

In this paper, we present how the next major release of
EPICS (version 4) which is currently under development
[2], will improve the CA protocol of EPICS version 3,
which is currently widely used. In the text that follows,
we shall refer to the existing CA protocol as “EPICSv3
CA”.

EPICS V4 CA IMPROVEMENTS

Clean Design with Few Dependencies
The EPICSv3 CA implementation has no dependencies

on third party libraries, middleware, toolkits and
frameworks. The only dependency it has is to a
lightweight operating system abstraction library which
allows it to be platform-independent.

Consequently, from early 1990’s till today, CA
implementation was relatively immune to technological
evolution in the field of operating systems and
middleware technologies. A recent study [3] has shown
that despite EPICSv3 CA uses a roll-your-own approach
to middleware, in terms of performance it is not at a
disadvantage compared to more recent and even state-of-
the-art middleware solutions such as CORBA [4], ICE [5]
and DDS [6].

* klemen.zagar@cosylab.com
on leave of absence

MOD005 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

40

Prior to commencing with design of EPICSv4 CA, we
have extensively evaluated commercial off-the-shelf
(COTS) as well as open source middleware solutions. We
have decided that the longevity, flexibility and
maintainability risks associated with adopting a third
party middleware do not outweigh the additional effort
required to develop the protocol atop of the socket and
threading APIs, especially considering domain as well as
technical experience we have gained analyzing and
developing EPICSv3 CA protocol [7][8], and low risk
exposure due to external factors as already experienced
by the EPICSv3 CA implementation.

EPICSv3 CA implementation evolved from an initial
set of requirements into its present form. As flexibility
was not on top of the priority list for the initial
implementation, the present design does not allow for
easy addition of new functionality without running at a
risk of breaking existing one.

Therefore, to make future adaptations easier, we have
leveraged the experience gained by the software
engineering community in the past two decades (e.g., the
design patterns [9]) and put a clean design as a top
priority. For example, extensive and consistent use of the
factory design pattern allows replacement of any software
component without affecting the rest of the
implementation – see Figure 2.

Figure 2: Class diagram showing how classes reference
each other only through interfaces, leaving choice of
actual implementation to configurable factories.

In EPICSv3, the reference implementation of channel
access is written in the C++ programming language. In
EPICSv4, we have decided to develop and consider as
reference the Java version, because nowadays Java offers
development tools that allow for shorter development
cycles, resulting in faster prototyping and development.

Asynchronous API and Design
The easiest way to work with input/output operations is

by using synchronous semantics, such as the following:

sendCommand("QUERY CURRENT");
current = receiveResponse();

This approach, while very intuitive, will cause the second
call to block until the response is received – which can
also be a very long, or even infinite, time. Also, waiting
for several responses cannot be scheduled simultaneously,
significantly reducing the performance.

To allow parallel execution, threads can be used, but
then the developer needs to take precautions to prevent
unanticipated concurrent access to shared data structures.
Also, threads consume resources and reduce performance
as they cause frequent task switching.

A better approach is to use asynchronous semantics:

requestResponse(responseHandler, errorHandler);
…
void responseHandler(char *response) { … }
void errorHandler(char *error) { … }

In this case, responseHandler is called when the
response is ready, and requestResponse call
completes immediately (no blocking). Also, unexpected
conditions can be handled in the errorHandler.

In EPICSv4 CA, the API is primarily asynchronous,
and the underlying design is optimized for asynchronous
operation. Synchronous API will be created atop of the
asynchronous one.

Support for Structured Data
In EPICSv3, a record can consist of a set of fields. Each

field can be a scalar or an array of scalars of the same
type. More complex data types, such as fields, were not
foreseen in the design (Figure 3, left).

Figure 3: In EPICSv3 (left) fields can be only scalars or
arrays. In EPICSv4/pvData (right) fields can contain other
fields as well (structures).

EPICSv4 also allows for structures (Figure 3, right). In

EPICSv4 data separation is cleanly separated from other
components (CA, input/output controller – IOC), and has
no dependencies. The component for data representation
is called pvData.

Simultaneous Access to Several Fields
In EPICSv3, CA Client is able to access fields only

individually. Thus, getting value of two fields of the same
record requires two GET CA commands to traverse the
network. For example:

Channel ch1 = context.createChannel("RECORD.VAL");
Channel ch2 = context.createChannel("RECORD.STAT");
ch1.get();
ch2.get();

Apart from being less efficient, this approach also
prevents the client from obtaining a consistent snapshot of
the server’s fields, because the second field’s value could
have changed since the retrieval of first field’s value.

In EPICSv4, CA Client first defines a subset of fields
of a record it is interested in by defining a ChannelGet
request object. This can be as small as a single field, or as

Proceedings of ICALEPCS2009, Kobe, Japan MOD005

Control System Evolution

41

all-encompassing as all fields, including those that are
deep in the structure. This information is shared between
the client and the server, and client can request the same
subset several times, without having to communicate all
the fields with each request, but just identifying the
request.

This approach not only allows the client to retrieve a
consistent snapshot of the field values, but it also
conserves required bandwidth and does not result in
excessive creation of objects at CA client and server.

ChannelGet cg = channel.createChannelGet(
 …,
 ChannelAccess.createRequest("alarm, timestamp"),
 …);
cg.get(false);
cg.get(true); // the last call – will dispose the ChannelGet

Client-Specified Filters
In EPICSv3, the monitoring policy of a record is

specified when configuring the database (e.g., the SCAN
field to specify the update rate of a record).

This was found to be too limiting, therefore in
EPICSv4 the client can specify a monitoring policy on the
level of a monitor, which applies to a subset of record’s
fields.

Presently, on-percent-change, on-absolute-change, on-
change and on-put algorithms are supported. Also, a
mechanism exists to add additional algorithms without
needing to change the EPICSv4 CA code.

Monitor Flow Control
It may happen that the server dispatches monitors to the

client faster than the client can handle them. This can
occur because the network link does not provide
sufficient throughput, because the client’s CPU is
overloaded, or because of improper handling of monitors
in the client application.

If improperly implemented at the server side, the server
might block when sending data to the client, as the TCP
send would block until TCP flow control detects enough
free buffer at the client side.

In EPICSv4 CA, a FIFO queue is provided at the server
to send data. The queue size is configurable, and the
following special sizes are of a consequence:

• 0: the data is sent to the network directly from the
server’s data structure. This is very efficient because
no data copying is needed, but if the server changes
the data while it is being sent, it might arrive to the
client in an inconsistent state (e.g., first part of an
image – an array of bytes – belonging to the first
frame, and the second part of the image belonging to
the second frame).

• 1: a single element in the queue. The data is cached
prior to sending.

• More than 1: a queue. When adding data to the
queue, and if the queue is full, the last element of the
queue is replaced with the added data, and an
overrun flag is set.

Remote Procedure Calls
In EPICSv3 CA, it is not possible to implement the

remote procedure call semantics correctly. This semantics
calls for data being provided to the server, the server
processing the data, and returning the result of the
processing back to the server.

EPICSv4 CA provides a mechanism called PutGet
request. Here, the data is first provided to the server (the
put part), the server record is processed, and the resulting
data is returned.

CONCLUSION
EPICSv4 CA provides significant new features to the

concepts of EPICSv3 CA: improved handling of
monitors, which is configurable by the client when
requesting data, ability to perform remote procedure calls,
etc.

At present, the implementation of Channel Access and
the Java IOC is sufficiently complete to allow for
applications to be developed. The source code is freely
available on SourceForge [10], and those interested are
invited to evaluate the suitability of EPICSv4 for their
applications.

Though on the wire EPICSv4 CA is not compatible
with EPICSv3, EPICSv4 applications (either clients or
servers) are able to talk with EPICSv3 applications,
assuring for seamless integration of EPICSv4 solutions in
EPICSv3 environments.

REFERENCES
[1] EPICS web page: http://epics.aps.anl.gov
[2] M. Kraimer, “JavaIOC Status”, EPICS Collaboration

Meeting, Kobe, Japan, October 2009
[3] K. Zagar, “ITER Control System Technology Study”,

EPICS Collaboration Meeting, Vancouver, Canada,
April 2009

[4] Object Management Group, “Common Object
Request Broker Architecture – CORBA”,
http://www.corba.org

[5] ZeroC: “Internet Communications Engine – ICE”,
http://www.zeroc.com

[6] Object Management Group, “Data Distribution
Service for Real-time Systems (DDS)”, Revision 1.2

[7] M. Sekoranja, “Native Java Implementation of
Channel Access for EPICS”, ICALEPCS’05, Geneva,
Switzerland, October 2005

[8] A. Pucelj, M. Sekoranja, K. Zagar, “Channel Access
Protocol Specification”, Revision 1.4, February 2008

[9] E. Gamma et al., “Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison
Wesley, November 1994

[10] EPICSv4 Channel Access and Java Input/Output
Controller implementation:
http://epics-pvdata.sourceforge.net/

MOD005 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

42

