
TANGO KERNEL STATUS AND EVOLUTION

E. Taurel (ESRF) on behalf of the Tango community
ALBA, DESY, ELETTRA, ESRF, SOLEIL

Abstract
This paper has two different parts. After a brief

introduction, the changes done within the Tango[1] kernel
since the last Icalepcs conference will be described. The
second part will focus on the foreseen evolution of the
Tango kernel. Special emphasis on the the so-called
Tango event system (asynchronous and event driven
communication between client and server) will be given.
Since its beginning, within Tango, this type of
communication is implemented using a CORBA
(Common Object Request Broker Architecture)
notification service implementation called omniNotify.
This will be replaced by a new system based either on a
home made design or based on an implementation of the
DDS (Data Distribution Service). The final choice is not
done at the time of writing this paper.

WHAT IS TANGO?
Tango is a control system tool kit developed within a

community of institutes. It is object oriented with the
notion of devices (objects) for each piece of hardware or
software to be controlled. Tango classes are merged
within operating system process called Device Server.
Three types of communication between clients and
servers are supported (synchronous, asynchronous and
event driven).

KERNEL LIBRARIES
Since the last conference, Tango has had 3 kernel

libraries updates. The first release (Tango 6.1 in 04/2008)
was dedicated to decrease the load on our configuration
database in case of massive device server process re-start
(after a mains power supply failure for instance).

The second release was the major release 7 in May
2009. It was a major release because the Tango IDL
(Interface Definition Language) file has been modified in
order to change the data exchanged on the wire.
Nevertheless, compatibility between Tango devices is
maintained by using IDL inheritance. The main reason of
the CORBA interface change was the replacement of
CORBA Any's object by union. The CORBA Any object
has the drawback of one unavoidable memory copy on the
client side which is a performance issue in case of large
data transfer. An optimized JPEG encoder/decoder has
been written and can be used to transfer compressed
images. This encoder/decoder has been optimized using
assembler code for the image color encoding/decoding
and for the discrete cosine transform used in the JPEG
standard. This optimized code is available only on x86
architecture and a classical C++ code is available for the

remaining platforms. Queues have been added to the
Tango asynchronous communication framework allowing
decoupling between event suppliers (device server
processes) and consumers (applications). Each Tango
device server process has an internal polling mechanism
coupled to a small data cache allowing fast response time
in case of slow hardware. The polling mechanism has
been modified and is now a pool threads allowing the user
to select which thread within the pool will be in charge of
which device(s). Using Tango, it is very easy to build a
hierarchical set of devices. An automatic way to retrieve
the device hierarchy has been added allowing faster
debugging in case of problem and a graphical display of
this hierarchy. A device locking feature has also been
added. This allows a client to lock a device. Other clients
which are not the lock owner can only do “read” actions
on the locked device..

GUIS, PYTHON, ARCHIVING
Tango support three languages to write clients and

servers. These languages are C++, Java and Python. New
features are implemented in C++. For the Python
language, rather than re-writing new features
implementation we use the C++ implementation with the
help of the Boost[2] python interface library and a Python
binding called PyTango. This PyTango binding has been
highly optimized during these last two years by Alba. It
has been re-structured in order to remove useless data
copy. See poster THP 016 and THP 079 for more
informations on this subject.

Tango already had two GUI layers: A Java layer called
ATK (Application Tool Kit) and a C++ layer called
QTango. A new Python Graphical layer called Tau has
been developed. It is PyQT[3] based and is fully
integrated in the Qt designer tool. The other two GUI
layers have also evolved. QTango is now in its major
release 3. It is also Qt 4 based and its thread management
has been re-written Its internal communication between
the Graphical objects and the Tango devices has been re-
organized. These changes lead to application less
demanding in term of threads and memory consumption.
See poster THP096. On the ATK side, several new
widgets have been added to its already rich widgets set.

The JDDD[4] (Java Doocs Data Display) tool
developed by Desy now supports Tango. JDDD is an
interactive panel builder which can use ATK widgets as
plug-in. Most of the ATK widgets are available in the
tool palette. The link between the ATK widgets that you
embed within your panel and the Tango device attributes
is done in a graphical way using a Tango devices tree.
This allow simple graphical application to be built
without requiring any coding from the application

THA001 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

630

designer. See poster TUP 035 for more informations on
this subject.

Our Soleil colleagues have also developed a protocol to
access Tango devices from the WEB. It is based on the
Java WEB start technology and on a Jboss server to do
the link between the HTTP protocol and the Tango
protocol (CORBA IIOP). This tool allows an application
developed using ATK to run over the WEB without any
changes.

ON-GOING PROJECTS
We actually have several new projects in their

development phase.
We will soon provide a Debian packaging of the Tango

kernel. This will allow a much faster and easier
installation of the Tango kernel compared to the source
distribution which is provided today. For instance, with a
tool like Synaptic which is available in the Ubuntu Linux
distribution, installing Tango will simply be a question of
a few mouse clicks.

CORBA is multi-platform and multi-languages.
Nevertheless, in the control system world, toolkits like
Tango do not implement only communication between
clients and servers. In the C++ kernel libraries, we can
estimate 30 % of code is related to CORBA and network
communication. All the remaining code is dedicated to
control system specific features implementation. For Java,
the Tango community as it is today is only able to
maintain the code at the same level than C++ layer on the
client side. We do not have the necessary resources to
make the Java Tango device server code following the C+
+ side. To solve this problem, a project has started to split
the Java Tango in two parts. The first one will support all
features client related and will stay in pure Java. The
second part dedicated to server processes will be
transformed in a layer above the C++ libraries using a JNI
(Java Native Interface) layer. A first prototype as a proof
of concept has already been written. Obviously, we will
loose portability due to this JNI layer but we will gain in
term of features availability and maintenance.

All the Tango classes follow the same skeleton.
Therefore, a code generator (Pogo) has been written to
generate these skeletons. This tool was available at the
very beginning of Tango. Pogo was implemented using
hand written parsing techniques. The decision has been
taken to re-write this code generator. The new release of
this tool will be based on modern techniques using
Xtext[5] to create a Tango DSL (Domain Specific
Language). This DSL is then used to describe the new
Tango class. Using Xpand and a set of templates, the
Tango class skeleton is generated. Xtext and Xpand are
used through the openArchitectureWare[6] tool. See
poster THP 080 for a description of this new code
generation system.

RE-THINKING THE EVENT SYSTEM
The Tango event system is based on the CORBA

notification service. When an event is detected, it is sent

to this notification service. It is the job of this CORBA
tool to forward the event to all the processes which have
subscribed to this event.
We are using the CORBA notification service
implementation called omniNotify. Figure 1 is a drawing
of the actual Tango event system.

Figure 1: Tango event system.

We now have some experiments with this architecture
and the following drawbacks have been detected:

• In case of several clients (event consumers)
interested by the same event, the notification service
forward the event to each client using unicast
network transfer.

• The event data are transferred using CORBA Any
objects.

• In some cases, the notifd has to buffer the event data.
This could easily leads to a large memory
consumption in the notification service process.

• The omniNotify implementation we have selected is
open source but it is a “dead” project. Its mailing list
is too quiet and since several years we do not notice
any changes in this code

We are actually studying two others solutions to replace
the actual system.

The first solution is based on Tango itself. In Tango, we
already have what is called Group object. One creates a
group in which you add Tango devices. Then, one is able
to execute a command or to read/write attributes on all
the group members. The group object uses tango
asynchronous communication to first send the request to
all the devices and then get their replies to finally returned
to the caller. The event provider will use an event
specialized group object to add the application as a group
member. The event propagation will be a call on the event
specialized group object. By a proper management of
exceptions received by the group object, it will be
possible to manage group members in case of application
crashes. This solution has the following advantages:

• Re-use the group concept already used within Tango
• Simplicity for Tango control system users. There is

no extra process

Proceedings of ICALEPCS2009, Kobe, Japan THA001

Control System Evolution

631

Nevertheless, it suffers from the following points:
• Still unicast network transfer
• Size of the code to be written
A second solution is the use of the Object Management

Group (OMG) Data Distribution Service (DDS)[7]. DDS
is a specification of a publisher/subscriber communication
system. It is the rule of the DDS middleware to forward
data between publishers and subscribers. DDS defines
many Quality Of Service (QoS) to tune the way data are
exchanged. A standardized network protocol called RTPS
(Real Time Publish Subscribe) allowing DDS
Interoperability is available from the OMG. This RTPS
protocol is designed to be able to run over multicast and
connectionless best-effort transports such as UDP/IP. The
main features provided by this protocol are

• quality-of-service properties to enable best-effort and
reliable publish-subscribe communications for real-
time applications over standard IP networks

• Plug-and-play connectivity so that new applications
and services are automatically discovered

Several implementations of DDS are nowadays
available. We are testing the implementation called
OpenSplice[8] which is delivered by the PrismTech
company. It is a LGPL licensed software. It supports two
network protocols (RTPS and a proprietary protocol), the
full set of QoS but only the first level of the DDS
specification. It is available for Windows and Linux.

On each host where it is used, OpenSplice is based on a
two layers system. The first layer is a network service
listening on the network and storing its data in an
operating system shared memory segment. The second
layer is the set of publishers/subscribers running on this
host. The software is configured using an XML
configuration file containing parameters like shared
memory size, protocol used (RTPS or proprietary).

DDS defines a large set of QoS. This could be seen as
an advantage because it gives you the power to fine tune
your system but this also means that you have to learn
about all of them making the learning curve steep. During
our tests, in order to get the same features than what we
actually have with our present system, we had to tune 6
different QoS out of the many available. These QoS are:

• Reliability to use the reliable protocol
• Deadline
• Liveliness to be informed of process shut-

down/restart
• History in order not to loose events
• Destination order to keep event order (the publisher

order)
• Partition
Using multicasting to propagate events seems to be a

good solution. Nevertheless, it needs to solve the
multicast address problem. With IP V4, multicast address
are class D addresses between 224.0.0.1 and
238.255.255.254. Every host belonging to a multicast
group will receive all the events sent to this group. For
instance, if you have only one multicast address, all the
hosts with publishers/subscribers processes will see all the

events flying in the system. If some of the events carry
large amount of data, it will be a performance bottleneck.
Ideally, one multicast group (address) should be assigned
to each event but this will lead to a very high number of
addresses to manage. OpenSplice DDS allows the
management of different multicast addresses. Publishers
and subscribers registers in a specific partition using the
partition QoS. With DDS configured with several
partitions, the problem is to assign the event to one
partition. It has to be noticed that the OpenSplice DDS
implementation of the RTPS protocol today support only
one partition making it not really usable in our
environment.

Some very preliminary performance tests have been
done using prototypes or simulating its usage. The results
are summarized in table 1. The number are the increase
in number of events/sec we could expect compared to the
figures we have actually. From this table, it is clear that
DDS gives the best performance. This is particularly true
when the number of event subscribers increase.

Table 1: Event System Preliminary Tests

1 Long (32 bits) 1 K Long (32 bits)

Group DDS Group DDS

1 Sub 72% 350% 23% 460%

10 Sub 100% 2500% 50% 2000%

Advantages and drawback of both systems are
summarized in table 2.

Table 2: Event Systems Advantages and Weakness

Group DDS (OpenSplice)

Advantages Simplicity
No dependency

Performance
QoS

Drawbacks Code to be written

Multicast address
QoS

Extra processes
RTPS not usable

CONCLUSION
From this paper, it is clear that Tango is still evolving.

The community still wants to improve it and the problem
is not a lack of ideas on how it could be improved but
rather a lack of resources to improve it.

REFERENCES
[1] http://www.tango-controls.org
[2] http://www.boost.org
[3] http://qt.nokia.com
[4] http://jddd.desy.de
[5] http://www.eclipse.org/Xtext/
[6] http://www.openarchitectureware.org/
[7] http://www.omg.org/tlogy/documents/dds_spec_catalog.htm
[8] http://www.opensplice.org

THA001 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

632

