
USING WINDOWS XP EMBEDDED BASED SYSTEMS
 IN A CONTROL SYSTEM

Tim Gray, Bob Mannix, ISIS, Rutherford Appleton Laboratory, United Kingdom

Abstract
Linux is popular in the Controls community, so

discussion of a system based around Microsoft Windows
XP Embedded is probably unusual. Having to replace an
obsolete front-end IO system, Windows XP Embedded
was chosen as the platform mainly due to the familiarity
of Windows. The author will describe configuring and
using Windows XP Embedded based CompactPCI
systems to deliver an operating system and software
platform that is used to communicate between the
Controls System and hardware deployed around the
accelerator using ‘in-house’ designed IO cards; including
configuring the system to boot over the network, using
HTTP (HyperText Transfer Protocol) and XML
(Extensible Markup Language) to exchange data with the
controls system and providing a simple C/C++ API to
communicate with the Controls System database..

WHY DID WE DO THIS
The Control System for ISIS runs on a cluster of

OpenVMS servers using Vista Control Systems[1]
software. The hardware we might want to control or
monitor could be a power supply, magnet or beam
chopper for example. Our existing setup placed a chassis
based on the STEbus standard between the Control
Systems and the hardware. This STEbus standard and the
particular design of it we are using had become obsolete
and a new solution was needed.

THE NEW PLATFORM
We examined various options for the replacement of the

STEbus based systems. Our starting point though was the
hardware platform. We rapidly decided that we wanted
our new systems to be based on the CompactPCI
standard. It is widely supported throughout the controls
and instrument industry and looks set to maintain that
support in the future.

Windows CE Embedded, Windows XP Embedded,
Embedded Linux, and QNX were evaluated but the
similarity of Windows XP Embedded to the standard
Windows XP won the day, requiring less skills acquisition
within the group.

REQUIRED SOFTWARE

Windows Embedded Studio
The software for building and maintaining a Windows

XP Embedded image is all included with Windows
Embedded Studio, which has to be purchased. It’s major
components are:

1. Target Designer
2. Component Database Manager
3. Target Designer
4. Component Designer
5. First Boot Agent (FBA) and FBreseal.exe
6. SDI Loader & sdimgr.exe
7. Remote boot Manager

Target Analyzer
Use this to create a template for your XP Embedded

image. It examines the devices your hardware platform
contains.

Component Database Manager
All Windows XP Embedded features, programs and

drivers etc. are components and stored in an SQL
database. A component database needs to be configured
somewhere before you build an image.

Target Designer
This is the main design application. The results from

Target Analyzer build your initial image description in
here. This is then used to add further components and
features to your image.

Component Designer
Custom components may be designed to install custom

applications or drivers or configure the image in another
required way. These components can then be added to the
component database.

First Boot Agent (FBA) and FBreseal.exe
FBA runs the first time an image is booted on a target

device. It completes the configuration of the image. Once
FBA has run, the target device is complete, or
FBreseal.exe if deploying the image to multiple target
devices.

SDI Loader & sdimgr.exe
We have our Windows XP Embedded image loading

over the network. These programs are needed to build the
file containing the image that loaded.

Remote Boot Manager
This is used to specify which image a network client

loads and along with the Remote Boot Service fulfils this.

THA003 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

636

BUILDING A WINDOWS XP EMBEDDED
IMAGE

By running these applications in the order listed a
Windows XP Embedded Image can be built. Certain steps
such as 3 – 5 are usually iterated to perfect your image.

This was the process used to configure our Windows
XP Embedded image for our CompactPCI hardware As
stated, we chose to load our image to our CompactPCI
chassis over the network, but other devices such as hard
disk, CDROM, CompactFlash and USB stick are
supported. The choice to boot our image over the network
was largely down to failures of similar hard disk based
systems in certain areas of ISIS and was one of the main
reasons for us using an embedded operating system.

THE APPLICATION PROGRAM
The task of our application is via communications with

the Control System running on VMS to interface with
CompactPCI IO cards in the chassis and control or
monitor the status of the equipment running ISIS. The
application was designed as a component and added to
our Windows XP Embedded image.

The application was written in C++ and designed to run
as a Windows Service. An HTTP server is run within the
application, accepting communications from the Control
System using the HTTP GET & POST methods. The
information comprising the request, and the subsequent
response, is packaged in XML. The use of an HTTP
server and XML does give the advantage of being able to
examine a system in the field using a browser.

The HTTP server is supplied as a class in a program
library, along with various other classes, most notably a
Database class. The Database object is a representation of
the Database in the Vista Control System, this being a
collection of channels which represent items of interest
for control or monitor on the relevant hardware.

Figure 1: Example XML used to load a Database.

By starting the HTTP server the application program
absolves itself of all network communication, it all being
handled by this server. The data that the HTTP server
works with is shared with the application in the form of a
Database object, which is a representation of the database
on the Vista Control System. See Figure 1 for an example
of the HTTP/XML data used to load a Database object.
The Database class is written to be thread safe, as it has to
be being shared in this manner.

The application program interacts with this Database
object using various available methods, such as
IterateChannels(), UpdateChannel(), GetValue() etc. Via
CompactPCI IO cards installed in the chassis data is read
from and to the equipment at regular intervals according
to information in this Database object. See Figure 2 to
illustrate this interaction.

Figure 2: Application Data Flow.

CONCLUSION
We have currently deployed 14 Windows XP

Embedded Systems around ISIS. They have proved an
excellent replacement for our old STEbus based systems.
The initial load time of a system if repowered is slower
than the old STEbus systems, but the infrequency of
doing it mitigates this. The advantages of being able to
use an internet browser to examine the current Database
on a running system are very useful. The familiarity of
Windows XP is a benefit to all members of the group
when managing these systems. The image does however
have to be regularly updated with Windows updates and
running relevant security software.

REFERENCES

[1] www.vista-controls.com

Proceedings of ICALEPCS2009, Kobe, Japan THA003

Control System Evolution

637

