

A SEQUENCER FOR THE LHC ERA

V. Baggiolini, R. Alemany-Fernandez, R. Gorbonosov,
D. Khasbulatov, M. Lamont, CERN, Geneva, Switzerland

Abstract
The Sequencer is a high level software application that

helps operators and physicists to commission and control
the LHC. It is an important operational tool for the LHC
and a core part of the control system that interacts with all
LHC sub-systems. This paper describes the architecture
and design of the sequencer and illustrates some
innovative parts of the implementation, based on modern
Java technology.

ARCHITECTURE AND DESIGN
The sequencer tool is conceptually divided into two

parts: the sequencer, i.e. the software system capable of
running sequences, and the sequences themselves.

Architecture and Design of the Sequencer
The sequencer follows the same architecture and

technology as most of the accelerator controls software: a
3-tier architecture implemented in Java using the Spring
Framework [1]. This architecture is shown in Figure 1.

The sequencer middle-tier server contains the core

functionality, such as sequence execution. It runs on a
Linux server in the computer centre. The resource tier is
composed of sequence storage and the controls for the
different LHC sub-systems. The client tier consists of
Graphical User Interfaces (GUIs), which run on Linux or
Windows consoles in the CERN Control Centre (CCC).
Many GUIs may connect to the same middle-tier server.

Figure 2 gives an insight into the middle-tier sequencer
server. Boxes with rounded corners represent software
modules and rectangular boxes with a folded corner
represent sequences. Items inside the dotted line are
running as part of the sequencer process itself.

The sequencer server works as follows. In the
beginning all sequences are stored in long-term storage
(1) which can be a database or an SVN source repository,
and typically has some versioning functionality. The

storage manager module retrieves the operational
sequences and passes the contents to the sequence
composer module. The composer module creates a
standard representation of the sequence (explained below)
and stores it in file format on the local hard disk of the
sequencer server (2). To execute a sequence, the sequence
loader reads it from the hard disk, transforms it to the in-
memory representation appropriate for the sequence
executor (3). The sequence executor runs the sequence by
executing the tasks inside. The tasks are simply Java
methods implemented in a set of task libraries, which are
deployed together with the core modules of the sequencer
server. The task libraries interact with various accelerator
controls services to ultimately control and supervise the
LHC sub-systems.

Sequences and Tasks
In the simplest case, a sequence consists of a list of

tasks which are executed one after the other. A more
advanced sequence may contain both tasks and sub-
sequences; there can be blocks of tasks to be executed in
parallel; and there can be flow control statements such as
if/else, loops and try/catch. In some cases variables are
used to store data and state.

The sequence itself (in its version stored on hard disk,
point (2) in Figure 2) is simply a Java source file. This
Java-centric representation was chosen for several
reasons. Java is an obvious way to express method calls

GUI

LHC sub-
systems sequence

storage

GUI GUI GUI

sequencer
middle-tier

server

task
libraries

storage
manager

LHC sub-
systems

sequence
in memory

sequence
on harddisk

sequence in long-
term storage

control

sequence
executor

sequence
loader

Sequencer
middle-
tier server

uses
tasks of

sequence
composer

Figure 2: Sequencer middle-tier server.

(1)

(2)

(3)

Figure 1: Sequencer 3-Tier Architecture.

THC003 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

670

(= task invocations) and all the constructs mentioned
above. The coherence of a sequence can be ensured to a
great extent by simply compiling the file. Java is the
language used in most accelerator controls applications,
which facilitates sequence development and does not
force developers to learn new representations and tools.
Finally, Java is an executable format. Any sequence in the
Java format can be executed directly from within the
development tools, without need to deploy it on the
sequencer server. This makes preliminary debugging of
sequences very efficient.

Even though task libraries are deployed together with
the core modules of the sequencer server, the two are well
separated. They are developed by different people and
contained in different libraries (jar files). A small team of
software engineers is responsible for the sequencer core,
whereas several domain experts from hardware
commissioning, from operations and from equipment
groups write sequences. Task libraries are developed
partly by the sequencer core team and partly by the
domain experts.

SEQUENCE EXECUTION
Running a sequence is a bit like running a program in

an enhanced debugger. The tasks of the sequence are
displayed in the GUI, and the user can set breakpoints to
stop execution, and “skip points” to skip certain tasks.
Execution is either automatic or manual. In automatic
mode, the sequence normally just runs to the end. It stops
if it hits a breakpoint, or if an error occurs in a task. In
manual mode, the user can step through a sequence task
by task; s/he can also execute tasks out of order, and jump
back and forth inside the sequence. In either mode, the
GUI is updated to show the execution flow, and to display
the results of the tasks as they are executed.

LHC Hardware Commissioning (HWC) and LHC beam
commissioning and operations have different require-
ments. This lead to two different implementations of the
execution core as explained in the next sections.

Requirements for Execution
The purpose of HWC is to test all the 1600 magnetic

circuits and the associated protection systems. Between 3
and 30 tests are executed for each circuit, which sums up
to a total of almost 10000 tests for the whole LHC. Each
test is implemented as a sequence. The HWC sequencer
automates execution of these test campaigns: several
HWC teams can work in parallel, and each team can
execute up to a hundred sequences (= tests)
simultaneously. In terms of sequencer functionality,
HWC sequences run in automatic mode. Breakpoints and
skipping are used only in special circumstances, and
jumping is not needed. HWC sequences contain loops,
if/else statements, and try/catch blocks, and they have
variables to store input data and results. Typically, many
sequences are executed in parallel, but there is limited
parallelism inside one sequence – tasks are mostly
executed sequentially.

For beam operations, the sequencer helps the operator
drive the LHC. Safety and reliability comes first, and
flexibility (e.g. skipping tasks) is needed only in special
cases, and must be carefully controlled. Sequences are
executed in automatic mode, with breakpoints but without
jumping and skipping. On the other hand, Beam
commissioning and machine development (MD) needs
more flexibility to deal with experimental situations, such
as systems that are not fully operational or new
functionality just being tested. In general, sequences are
executed in manual mode before they are run
automatically.

LHC sequences are more linear than HWC sequences,
they do not contain any loops, if/else statements and
try/catch blocks, and do not use variables. Parallelism
requirements are opposite to HWC: only one sequence is
typically executed at any time, but several of its tasks
must be executed in parallel, to act on different LHC sub-
systems simultaneously. Error behaviour must be
configurable: if a task fails, the sequencer can be
configured to either ignore the error, to stop sequence
execution or to continue with a so-called “recovery
sequence”. In LHC beam commissioning and MD, the
sequences are similar to those of beam operations. The
additional flexibility is achieved by supporting skipping
and jumping in addition to breakpoints.

The execution requirements are summarized in Table 1.
Table 1: Execution Requirements

 HWC Beam comm. and OP
Execution Run, stop, break,

skip
Run, stop, break,
skip, jump

Error handling Fail and stop on
error

ignore, stop, run
recovery sequence

State In variables No variables
Control
statements

Loops, if/else,
try/catch

N/A

Typical
parallelism

Sequences in
parallel

Tasks running in
parallel

Typical mode Run-through
automatically

Both “debug” and
run-through

HWC Executor Implementation
There are two implementations of the executor module,

a script-based one for HWC, and a reflection-based one
for Beam operations and commissioning. The script-based
executor is implemented using the Pnuts scripting
language and its interpreter [2]. Pnuts is similar to Java,
and Java methods can be called directly from Pnuts
scripts. It has the features needed by the HWC sequencer
such as variables and flow control statements. The
interpreter supports debugging, with breakpoints and
stepping functionality. However, it does not support
skipping of tasks. We implemented skipping with aspect-
oriented programming (AOP) using AspectJ [3]. We
declared an advice around the central method invocation
code in the Pnuts interpreter. To skip a task, the advice
simply continues without invoking the advised method.
With AspectJ it is possible to integrate (“weave”) this

Proceedings of ICALEPCS2009, Kobe, Japan THC003

Operational Tools

671

AOP code into the Pnuts jar file without any need to
modify or even re-compile the Pnuts sources.

HWC Loader Module
In our first implementation, the sequences were written

in Pnuts, but this was tedious and error prone. People
were not familiar with the Pnuts language and had no
good editing tools for it. Even worse, as no compilation
was done, many mistakes in the Pnuts sequences were
detected only at run-time, when the sequence was
executed. Therefore, we decided to use Java as central
format of all sequences, as described above.

The HWC Loader module is responsible of transfor-
ming a Java sequence into a Pnuts script. The Java
Compiler Compiler (JavaCC) [5] was used for this. The
Java source is first parsed into an Abstract Syntax Tree
(AST). A series of checks are done on the AST, to make
sure the sequence conforms to some rules and restrictions,
e.g. that it only uses for loops, if/else and try/catch and no
other flow control constructs. Then a modified “pretty
printer” component for Java source code is used to
transform the AST into Pnuts source code.

This AST-based approach proved to be very powerful
to fulfil also other requirements involving source code
transformation. For instance, all HWC sequences begin
with the same initialization code and end with the same
bookkeeping code. Instead of replicating the same code in
all sequences, we decided to use a better approach. It is
based on the Template Method design pattern [5] plus
source code transformation, as illustrated in the code
example below. All HWC sequences inherit from the
same abstract Java (GenericHwcSequence) class which
contains the initialization and bookkeeping code, and
calls an abstract method specificPart() in between.
This abstract method is implemented in the derived
sequence class (HwcTest1) and contains the HWC-test-
specific tasks. The HWC loader is capable of “flattening”
the hierarchy of the two classes (the abstract parent class
with initialization code and the concrete implementation
class with the sequence iself) into one flattened class with
the full code of the sequence (FlattenedHwcTest1).

abstract class GenericHwcSequence {
 void exec() {
 initializeCircuits();
 specificPart();
 bookKeeping();
 }
}

class HwcTest1 extends HwcSequence {
 void specificPart() {
 task1();
 task2();

 }
}

class FlattenedHwcTest1 {
 void exec() {
 initializeCircuits();

 task1();
 task2();

 bookKeeping();
 }
}

Executor for Beam Commissioning and OP
To fulfil the requirements for beam commissioning, we

implemented an executor from scratch in Java. It uses the
Java reflection package to execute the tasks (Java
methods), and Java’s concurrency package to implement
parallelism. Breakpoints, jumping and skipping were
relatively easy to develop. The requirements did not
include variables and control constructs, which according
to preliminary studies would have been more complicated
to implement. The on-error behaviour was realized as
follows. For each task, the sequence developer can
specify what should happen: if the execution should stop,
if it should simply ignore the error and continue
execution, or if a recovery sequence should be executed.
By default, the execution stops.

A special feature of the beam commissioning sequencer
is execution of a sequence when an external event (e.g. a
beam dump) happens. From a conceptual point of view,
this resembles interrupt handlers in assembly language. It
was implemented keeping this concept in mind: there is a
pre-defined set of external events (the events sent by the
LHC timing system). A special task exists to associate
(register) a sequence with an external event, and an
opposite task to undo this association again.

CONCLUSIONS AND OUTLOOK
The sequencer has been used operationally for more

than two years in HWC, and over 18 months for LHC
beam commissioning. In addition, it is in operation also in
the SPS accelerator and the Compact Linear Collider
(CLIC). It has become a vital tool for operations: over 60
sequences and sub-sequences exist for HWC, 450 for
LHC beam commissioning, 25 for SPS and a dozen for
CLIC. Many improvements were made during this period,
and a lot of feedback from operations was integrated. A
new GUI was developed this year for the LHC operations,
by one of the authors of this paper. Unlike the existing,
general-purpose GUI, the new one is tailored to the needs
of LHC beam commissioning and operations. A new area
of work is to implement a good technical solution to
conjugate the flexibility needed for beam commissioning
with the rigor indispensable in LHC operations.

REFERENCES
[1] www.springframework.org
[2] www.pnuts.org
[3] en.wikipedia.org/wiki/AspectJ
[4] https://javacc.dev.java.net/
[5] http://en.wikipedia.org/wiki/Template_method_pattern

THC003 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

672

