
ORBIT DISPLAY'S USE OF THE PHYSICS APPLICATION FRAMEWORK
FOR LCLS*

Michael Zelazny#, Sergei Chevtsov†, Chungming Paul Chu‡, Diane Fairley¤, Patrick Krejcik∞,
Partha Natampalli∆, Deborah Rogind×, Greg White☼, SLAC National Accelerator Laboratory,

Menlo Park, CA, U.S.A.

Abstract
At the SLAC National Accelerator Laboratory (SLAC)

the Controls Department (CD) is developing a physics
application framework based on the Java(tm)
programming language developed by Sun Microsystems.
This paper will discuss the first application developed
using this approach: a new Orbit Display. The software is
being developed by several individuals in reusable Java
packages. It relies on the Experimental Physics and
Industrial Control System (EPICS) toolkit for data
collection and XAL - A Java based Hierarchy for
Application Programming for model parameters. The
Orbit Display tracks and displays electron paths through
the Linac Coherent Light Source (LCLS) in both a
graphical, beam line plot, and tabular format. It contains
many features that may be unique to SLAC and is meant
to be used both in the control room and by individuals in
their offices or at home. Unique features include BSA
Beam Synchronous Acquisition (BSA), Orbit Fitting, and
Buffered Acquisition.

TECHNOLOGIES

Reusable Java Packages
With an eye towards reusability, and the availability of

several programmers, we adopted a divide and concur
strategy. Thinking ahead to the various projects required
of the Controls Physics-Applications group we partitioned
the Java packages into several reusable components.
Their dependencies are listed in Figure 1.

Being our first venture into the Java programming
language, we learned, albeit the hard way, the two things
Java programmers worry about the most:

1. The Java Classpath
2. The Java Threads

We discovered that certain things, such as handling the
Graphics User Interface (GUI) button pushes and screen
updates must be done in a special GUI thread, already
present in your application courtesy of the Java
programming language. The Orbit display’s Java threads
are described in Figure 2.

Figure 1: Java library dependencies.

Figure 2: Java threads.

Eclipse
Due to its wide acceptance, and it low price, we chose

Eclipse as our integrated development environment
(IDE). Its build tool creates a file that contains a known
working Java classpath. This a little shell script coaxing,
this file can be used to properly set the CLASSPATH
environment variable when launching the application.

*Work supported by the U.S. Department of Energy under contract
number DE-AC02-76SF00515.
#zelazny@slac.stanford.edu
†chevtsov@slac.stanford.edu
‡pchu@slac.stanford.edu
¤dfairley@slac.stanford.edu
∞pkr@slac.stanford.edu
∆partha@slac.stanford.edu
×drogind@slac.stanford.edu
☼greg@slac.stanford.edu

Proceedings of ICALEPCS2009, Kobe, Japan THC004

Operational Tools

673

EPICS
The LCLS has adopted the EPICS toolkit for new and

upgraded beam line devices. To access EPICS process
variables (PV) we chose to use Java Channel Access
(JCA). JCA was chosen because it is a pure Java
implementation of the EPICS CA protocol.

XAL
XAL, a high level accelerator application framework

originally developed by the Spallation Neutron Source
(SNS), Oak Ridge National Laboratory, provides generic
hierarchical view for an accelerator [1]. XAL is also used
to calculate the physics model used by the Orbit Display.

Standard GUI Framework
After considering frameworks as diverse as Eclipse and

XAL, we decided that they lacked some of our desired
features and were generally too complex to quickly build
robust applications. So, we developed our own Graphical
User Interface (GUI) Framework (GFW) [2]. In contrast,
simplicity and customization are the main criteria behind
GFW's existence. Using only basic Swing components,
GFW defines a standard layout for GUI applications and
allows the developers to extend the generic look-and-feel
without any constraints (see Figure 3).

Figure 3: SLAC standard Java GUI framework.

STANDARD DISPLAYS
The Orbit Display application is the simplest extension

of the standard beam line Z plot – devices displayed in the
order the beam reaches them – Java package. This display
shows a continuously updating portion of LCLS’s beam
position monitors (BPM), toriod charge monitors, out of
tolerance magnets, beam line obstructions such as
inserted profile monitors, and a cartoon representing the
various beam line components, see Figure 4.

Since the standard beam line Z plot only gives the user
a cursory overview of the various device’s values, an
updating table is also provided, see Figure 5.

Figure 4: Beam line Z plot.

Figure 5: Orbit table.

FEATURES UNIQUE TO SLAC

Beam Synchronous Acquisition
SLAC physicists desire the ability to track a single

particle bunch through the accelerator. Since the EPICS
toolkit does not provide this functionality, we developed a
facility to do this called Beam Synchronous Acquisition
(BSA).

Orbit Fitting
Using a combination of measured parameters and the

beam trajectory predicted by the accelerator model, it is
possible to overlay the predicted beam path with the
actual beam path, see Figure 6. Among other things, this
is used to determine, for example, whether BPM signals
are properly wired to the electronics used to read their
signals.

THC004 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

674

Figure 6: Orbit fitting.

Buffered Acquisition
In addition to viewing the beam trajectory through the

accelerator, SLAC physicist’s desire the ability to set up
an experiment, run that experiment, then view how
various signals changed. Since that LCLS machine rate is
too fast to for our network to read every signal at the
beam rate, the data is buffered on the EPICS Input Output
Controller (IOC) then sent later to the applications
requesting the data. Figure 7 is a plot of a BPM signal
over time. Figure 8 is a table of the same signal. Figure 9
is a histogram of that signal.

Figure 7: Signal plot.

Figure 8: Signal table.

Figure 9: Signal histogram.

REFERENCES
[1] C. Paul Chu, “XAL Adoption Experience at LCLS”,

ICALEPCS ’09, Kobe, Japan, October 2009,
TUP012 http://icalepcs2009.spring8.or.jp/index.html.

[2] S. Chevtsov, “GFW - New GUI Framework at
SLAC”, ICALEPCS ’09, Kobe, Japan, October 2009,
THP103 http://icalepcs2009.spring8.or.jp/index.html.

Proceedings of ICALEPCS2009, Kobe, Japan THC004

Operational Tools

675

