
THE IMPLEMENTATION OF THE SOFTWARE FRAMEWORK IN
J-PARC/MLF

T. Nakatani, Y. Inamura, T. Ito, S. Harjo, R. Kajimoto, M. Arai, JAEA/J-PARC, Tokai, Ibaraki,
Japan

T. Ohhara, H. Nakagawa, JAEA, Tokai, Ibaraki, Japan
T. Aoyagi, JAEA, Taito-ku, Tokyo, Japan

T. Otomo, J. Suzuki, T. Morishima, S. Muto, R. Kadono, S. Torii, Y. Yasu, KEK, Tsukuba, Ibaraki,
Japan

T. Hosoya, M. Yonemura, Ibaraki university, Hitachi, Ibaraki, Japan

Abstract
To perform neutron scattering experiments efficiently, it

is necessary to use many kinds of software components
such as data acquisition (DAQ), equipment control,
analysis and visualization with ease-of-use and high
throughput environments. At accelerator-driven neutron
facilities with MW-class proton power, such as J-PARC
(Japan Proton Accelerator Research Complex) and SNS
(Spallation Neutron Source), data sizes are varied from
several hundred MB to several ten GB per hour,
depending on beamlines. Therefore, the software is
necessarily scalable and flexible for the various
experiments and the enormous data. In J-PARC/MLF
(Materials and Life science experimental Facility), a
common software framework has been constructed and
then many software components are running on this
software framework. Our software framework is based on
Python and processes network distributions with XML
(eXtensible Markup Language) messages over HTTP
(Hyper Text Transport Protocol). This software
framework enables experimental users to seamlessly
perform neutron experiments and analyze the acquired
data, as well as instrument scientists to coordinate their
instruments and manage the configurations.

INTRODUCTION
In J-PARC/MLF, the neutron experimental instruments

which have groups of detectors with thousands of pixels
are measuring the neutron signals while changing
scanning conditions of the several equipments such as
sample environment devices and beamline components.
The data size on each scanning condition is quite possible
to be more than GB. Because J-PARC/MLF is a high
intensity pulsed neutron source, the measurement at one
scanning condition can be performed in very short time
(less than 1min.). Users need to optimize the condition in
a short time by taking account of the result of previous or
current data analysis. Thus, the data processing must be
scalable.

There are 23 neutron beamlines in J-PARC/MLF.
Various kinds of instruments are in use, being
commissioned, constructed and proposed. Each
instrument is used in several disciplines with various
experimental setups and various types of software.
However, the human resources to construct and maintain

the computing environment of the instrument are limited.
Therefore, we have decided to construct the software on a
common and flexible software framework.

The whole information of the instruments should be
recorded for maintenance. The parameters of the
measurement under various scanning conditions and the
analysis results associated with the measured raw data are
also recorded as experimental meta-data in a database.
The results of the simulation such as a first-principle
calculation are also recorded in it. The experimental users
can make use of this information before their experiments.

The number of experimental users who visit J-
PARC/MLF is expected to be about ten thousands per
year. Majority of the users are not professionals in
neutron experiments. Hence, the system of the instrument
should be user-friendly. In addition, since the raw data
size is enormous (several tens GB), it is very difficult to
bring the data back to their home laboratories. They often
access the MLF computing environment and analyze the
acquired raw data from their laboratories.

On the basis of these, we have been constructing the
software framework that meets the requirements shown
below.

 Scalability: high throughput for the large scale data
of gigabyte order.

 Flexibility: adaptability of various experimental
purposes and reduction of resources for development
and maintenance.

 Database: logging the whole experimental
information and practical use of previous
experimental results.

 Usability: user-friendly system for a lot of users
considering remote access.

MLF COMPUTING ENVIRONMENT
Figure 1 shows the diagram of the MLF computing

environment. The computing environment has many
software components distributed in the network. The
software framework is responsible for the communication
between components with XML and input/output to data
storage including database.

One of the components, a user interface (UI)
component called “Working Desktop” (WD), has been
developed based on an object oriented script language,
Python. Users can perform their experiment and data

THC005 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

676

analysis by sending Python commands through the
component. In another words, users can seamlessly
operate experimental controlling, data analysis and
visualization with one Python script. So far, basic
commands were implemented. Graphical user interface
(GUI) of WD component is under development. We have
been constructing several components in WD.

The experimental controlling component consists of
controlling DAQ hardware and other equipments such as
sample environment devices and beamline components.
We introduced “DAQ-Middleware” [1] as the standard
DAQ software. Since DAQ-Middleware recognizes and
absorbs differences between detectors, such as 3He gas
detector, scintillator detector and so on, commands on
WD are same for every kind of detectors.

The analysis component called “Manyo-lib” [2] is a
C++ library wrapped in Python by SWIG (Simplified
Wrapper and Interface Generator). Manyo-lib provides
the standard data structure called “Element Container”
based on STL (Standard Template Library). Users can
process the data by using built-in functions of Manyo-lib
(for mainly data reduction) on Python command line and
also add new functions written in Python or C++ for their
own scientific analysis. Manyo-lib is mainly responsible
for heavy task like the conversion function of histograms
form event data. Common and established functions
written in Python and other legacy language will be
implemented in Manyo-lib.

The developed visualization component written by
wxPython and matplotlib visualizes the 2D/3D data
processed via Many-lib.

The database component is now being developed. It
will be an XML-typed database system. It logs and
monitors the whole data in the MLF computing
environment linking to the J-PARC proposal submission
system managed by the J-PARC Users Office. The
components of simulation and remote access are under
discussion.

Common Library
Experimental control

Equipment control

DAQ-Middleware

DAQ System

Device

Common Library
Analysis ”Manyo-Lib”

Chopper

Powder Diff.

Res. Stress etc.

Instruments specific Lib.

Single Xtal

Integrated User Interface

Working Desktop

DAQ script

Analysis script

Common Interface
Visualization

2D

>3D

3D

API Library
Storage

NeXus File

XML File

Network
Storage

Common Interface

Simulation

Simulator

ab initio

Common Interface

Data base

DAQ log

Analysis log

Device monitoring

Remote
Access

Raw data

XML/HTTP DAQ electronics

Equipment
controllers

Software Framework
Python

Figure 1: The diagram of the MLF computing
environment.

DETAILS OF THE SOFTWARE
FRAMEWORK

Server-Client model was adopted to realize a network-
based framework: WD is the client and it sends requests
to servers. The software framework consists of following
types of software written in Python:

 Working Desktop: Integrated user interface and the
client in the network

 Instrument management server: Measurement state
machine of hardware control

 Analysis control server: Analysis and visualization
state machine.

The communication protocol between WD and the
other components is the exchange of XML messages over
HTTP. Table 1 shows examples of the relation between
the Python commands and XML messages over HTTP.

Table 1: Examples of elation etween ython Commands
and XML Messages over HTTP

Command URI Request BODY

SE.params(Cond1) /sample/params POST <params>
Cond1

</params>

DAQ.begin() /daq/begin POST

DAQ.status() /daq/status GET

Working Desktop
Users can execute these Python-base functions from a

character user interface (CUI) and a GUI of WD. The CUI
is an execution environment using the command line of
Python, and the GUI is an execution environment
constructed by wxPython which is one of the user-
friendly GUI tool kits for Python. The common GUIs
such as the status display, the launcher, the sequencer and
the authentication are developed. The status display
always displays the operation status of the instrument, the
status of the DAQ system, each status of the equipments
and the neutron source status of J-PARC/MLF. The
launcher controls the executions of software for
measurement, analysis, visualization and the maintenance,
and also operates the DAQ system directly. The sequencer
helps to make a Python sequence with Python functions
and the parameter input. The sequencer also supports
execution of the sequence and monitoring its progress on
the GUI. The authentication specifies who uses the
instrument and achieves the exclusive control with the
ticket.

Instrument Management Server (IMS)
The instrument management server (IMS) executes

automatic measurements combining DAQ hardware and
several equipments according to measurement conditions
and operation control scripts. The measurement
conditions consisting of the initial and scanning
conditions are written in a form of XML, and the
operation control scripts are written in Python according

R B P

Proceedings of ICALEPCS2009, Kobe, Japan THC005

Operational Tools

677

to the guideline of the software framework. The operation
control script is executed as a background task. The
scanning parameters of each condition are recorded in a
form of XML.

Working
Desktop (WD)

UI

Instrument manager
Measurement control,

Equipment control

Operation status,
Equipment status

Instrument
management
server (IMS)

Equipment control Equipment
status

Operation status

DAQ/Equipment

Operation
control
script

Execute

Equipment
control server

Equipment
control

Measurement
condition

Operation control
script

Create
or

load

19 20 21 22 23 2413 14 15 16 17 187 8 9 10 11 121 2 3 4 5 6

43 44 45 46 47 4837 38 39 40 41 4231 32 33 34 35 3625 26 27 28 29 30

Equipment
status

Request / Reply

Equipment
control

Figure 2: Measurement procedure.

The measurement is performed according to the
following procedure: (figure 2)
1. WD: Create or load the measurement condition and

the operation control script.
2. WD: Send the measurement condition and the

operation control script to IMS to start measurement.
3. IMS: According to the operation control script, threads

are invoked and requests are sent to DAQ and each
equipment control.

4. IMS: Monitor operation status and each equipment
status.

Analysis Control Server (ACS)
The analysis control server (ACS) executes analysis

and visualization according to analysis conditions given
from WD. The analysis conditions consisting of the
information such as required analysis modules and the
execution sequence are written in a form of XML. We can
describe the procedure of the calculation of parallel /
serial or synchronous / asynchronous as an analysis
condition. Analysis parameters given to analysis modules
are recorded in a form of XML. The ACS has not only the
network processing mode but also the stand alone

processing mode. The users can execute the same analysis
in their home laboratories by using the stand alone mode.

Figure 3: Analysis procedure.

The analysis is performed according to the following
procedure: (figure 3)
1. WD: Create or load the analysis condition.
2. WD: Send the analysis condition to ACS to start

analysis.
3. ACS: Execute analysis modules inside in the stand

alone mode, or send an analysis module startup script
to analysis server and execute analysis modules by
analysis module startup script at the analysis server
side in the network mode.

4. ACS: Monitor analysis execution status.

SUMMARY
We have developed the software framework for DAQ,

equipment control, analysis and visualization of the
neutron experimental instruments in J-PARC/MLF. The
software framework is scalable and flexible by Python
and the distributed network processing with XML/HTTP.

REFERENCES
[1] K. Nakayoshi, Y. Yasu, E. Inoue, H. Sendai, M. Tanaka, S.

Satoh, S. Muto, N. Kaneko, T. Otomo, T. Nakatani, and T.
Uchida, Nucl. Instrum. Methods Phys. Res., Sect. A 600
(2009) 173.

[2] J. Suzuki, T. Nakatani, T. Ohhara, Y. Inamura, M.
Yonemura, T. Morishima, T. Aoyagi, A. Manabe and T.
Otomo, Nucl. Instrum. Methods Phys. Res., Sect. A 600
(2009) 123.

THC005 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

678

