
ALBA, A TANGO BASED CONTROL SYSTEM IN PYTHON

D. Fernandez-Carreiras, F. Becheri, S. Blanch, T. Coutinho, G. Cuní, J. Klora, C. Pascual-Izarra, S.

Rubio-Manrique, R. Suñé, CELLS, Bellaterra, Barcelona, Spain.

Abstract
Alba is a member of the Tango collaboration. We have

focused on the development of support for Python in

Tango. Now, most device servers and clients are based on

Python. On the client side python is combined with Qt

(Nokia) / PyQT (RiverBank) for graphical interfaces and

IPython (open source) for command line interfaces.

Python is fast and suitable for most device servers, and

gives an enormous flexibility in terms of evaluation of

expressions, and embedded on-line calculations. This

paper describes the choices taken on controls software

development

However, Alba has also developed specific servers in

C++, which Tango integrates perfectly with Python

servers and clients in the control system. Many others

written in C++, Java and Python, which have been

published by the members of the Tango collaboration [2],

are also used at Alba.

Figure 1: View of the Accelerators’ tunnel; on the left the
storage ring, and on the right the booster. Picture taken on
the 8th of September 2009 (J. Klora).

INTRODUCTION

The Tango collaboration counts now five members:

chronologically, the ESRF (where Tango was initially

developed), Soleil (The first synchrotron using Tango as

the unique controls middleware), Elettra, Alba and

DESY. The Python support for Tango (PytTango) has

been developed at Alba by E. Taurel (now at the ESRF)

and T. Coutinho. PyTango is now extensively used at

Alba.

Tango can be described as a middleware built on top of

CORBA[3], and a set of tools and services for developing

a control system. It is based on the concept of “Device

Servers” distributed in different computers, typically

Linux and Windows Input Output Controllers (IOCs)

having the hardware electronics for control and data

acquisition. It is a client-server design having a central

database for name services and configuration parameters.

Tango fully supports C++, Java and Python for both

servers and clients.

PYTHON AND TANGO

The Tango core is written in C++, but supports a

number of bindings, for example, Labview, Matlab

(Soleil), C (ESRF). Python is interfaced with the Tango

Core libraries using boost [4] and therefore it is strongly

linked to the C++ Tango Core. Java support is on the

other hand independent, which leads sometime to

different or outdated behaviors in the core. Both Tango

clients and servers are supported in Python. Today more

than two thirds of the device servers and almost all

Graphical User Interfaces (GUIs) at Alba are developed

in Python.

Figure 2: Software architecture of the Alba Control
System.

Sardana Framework Package

Sardana [5] is the name given to the framework built on

top of Tango, shown in blue in Figure 1. It is inspired on

SPEC’s [6] architecture. It provides a series of facilities

for dynamically integrating new hardware components

into the control system, and making them available for all

clients. It also offers other functionalities like scripting

(with a large library of standard macros), data storage,

etc.

The device pool is a Tango device server, which offers

an extra abstraction layer to the hardware, allowing new

devices to be software “hot-plugged”. It takes care of

software synchronization between devices and adds

functionalities, that the device might be lacking, for

example “motor backlash”. The device pool is a device

server written in C++, however most controllers are

written in Python (both Python and C++ are accepted).

Controllers are created, deleted and edited in run time.

Controllers can access directly the hardware or other

Tango devices. Clients found always a standard interface

for a device type independently from the underlying

hardware.

Proceedings of ICALEPCS2009, Kobe, Japan THP016

Control System Evolution

709

The macroserver is a Python device server that

manages the execution of scripts or procedures usually

called macros. It has doors associated. A door is a Tango

Server that manages connections from clients to the

macroserver. Macros are python classes. A standard

macro library stores the common procedures for scanning,

moving motors, counting, etc. It is usually accessed from

the macro executor GUI or the Command Line Interface

(CLI).

Command Line and Graphical Interfaces

Spock is a IPython based CLI for Sardana. It

communicates with the macroserver through one of its

doors. Because it is IPython based, all CLI niceties (like

word completion on Tab, command history on Up, Down

arrows) are automatically available which makes it very

easy for spock to mimic SPECs UI. The user executes

'magic' commands (like scans, alignment procedures) in

the command line which spock translates to execution of

macros inside the macroserver.

The MacroExecutor is a widget offering a user-friendly

interface to the macro repository. Standard and user

defined macros are selected from a graphical user

interface, prompting for input arguments and offering

results and plots. A snapshot is shown in the Figure 3.

Figure 3: Snapshot of the MacroExecutor.

Tau

Tau is the graphical interface layer at Alba. It is built on

PyTango and uses Qt [7]. It implements a model view

controller pattern. The models are provided by the

TauCore layer, which is independent of the widgets.

Normally GUIs are generated by the Qt Designer, but not

exclusively. A library of Tau Widgets is available also

from the designer. Written mostly in Python although,

some of them in C++ and integrated with sip, these set of

widgets constitute the basic bricks for creating graphical

applications or new widgets. A model property gets the

model from the factory in the TauCore and subscribes to

events typically fired by changes in the Tango Attributes.

Figure 4: Snapshot of the GUI for the vacuum control of
the booster. It has a TauTree on the left, a TauGrid on the
top and a TauTrend on the bottom.

Figure 5: Fluorescence screen GUI. It combines, Qub,
showing the image, TauPlot, showing the vertical and
horizontal sections and TauForms.

Device Servers in Python

Tango device servers written in Python are very

suitable for many applications. The macroserver itself is a

good example. When a large number of attributes is

needed, for example, the case of PLC device servers,

dynamic attributes show many advantages and Python is

the best choice [8]. Many attributes can be dynamically

created depending on “live” information. Besides, they

can be configured in properties from information coming

from controls and cabling database [9].

PYTHON PACKAGES

In the above pieces of software and frameworks several

standard open-source packages are used. Here are some of

them: IPython for the command line interface providing a

useful interactive python shell, Qwt providing graphics

for 2D plotting, SciPy and NumPy for numerical data

analysis. QtControls, a Qt based C++ widget library

developed by Elettra for control widgets with a python

THP016 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

710

binding using SIP and QUB (a package for fast 2D and

1D visualization developed at the ESRF) are also used.

SPS is a C based shared memory library developed at the

ESRF with a python binding written in pure C. PyMca

[10] and NewPlot (ESRF) are very convenient for online

and offline data analysis and visualization.

USE CASES

Our experience concludes that step-scans, sequences

and rapid integration of new hardware for a particular

experiment are crucial requirements for all Beamlines

(and in most cases for accelerators too).

Python cares of plotting, macro execution, graphical

interfaces, command line, and slow data acquisition,

which are a big part of the controls software. For

particular data acquisition needs, like Beam Position

Monitors, or fast X-Ray Detectors, another technology

might be more suitable, like coding C modules in the

kernel or C++ servers in user space.

Data recorders for slow acquisition, NeXus [11], SPEC

files, log files and even 2D data are also generated in

python. Currently Alba uses the ESRF data format for

two-dimensional images, and the SPEC format for scans.

NeXus support is also available. At the moment we are

working on compatibility with other synchrotrons, which

are also adding Nexus support to their data storage

systems (Soleil, Diamond and the ESRF).

Figure 6: Snapshot of the Icepapcms.

Although most software is written on the Tango

Framework, few stand-alone applications are needed. It is

the case of the Icepapcms, the configuration software for

Icepaps. Icepap is the standard motor controller at Alba.

The hardware has been developed at the ESRF, and the

configuration software at Alba. Many parameters, some

of them critical, must be configured before using a motor,

like current, encoders, limits, etc. It manages a database

with historical configurations; supports motor catalogs

and has a tool for online tests. Icepapcms is built with the

same standard tools.

CONCLUSION

Alba has focused the software developments on

Python. Most device servers and all graphical user

interfaces are written in Python. It has proven to be

suitable for GUIs (combined with Qt), and for most

device servers. It is also very convenient for writing

simulations and dynamic attribute expressions. Moreover

it is an excellent choice for data analysis. Only the cases

where very fast data acquisition, storage or processing is

needed complementary solutions are proposed.

CONTRIBUTIONS

Many developers are working on this project. We

would like to thank all of them. E. Taurel is the main

Tango Core developer and the first author of the Sardana

Framework and the Tango binding for Python. Besides

the ones named in the Author Tab, there are many other

people working in the project: L. Krause (Power Supplies,

Linac), Z. Reszela (Tau widgets, beamlines), J. Moldes

(Libera BPMs, Timing, beamlines), A. Milán (RF,

beamlines), M. Niegowski (Radiation Monitors, PLC

GUIs), We would also like to thank other contributors

from different institutions, in particular A. Homs, V. Rey,

S. Petitdemange, G. Berruyer, L. Claustre, M. Guijarro

and the whole Bliss group at the ESRF, for their great

collaboration. Not forgetting T. Nuñez and T. Kracht at

DESY, and all our Partners in the Tango Community.

REFERENCES

[1] Alba Synchrotron, http://www.cells.es

[2] Tango Control System, http://www.tango-controls.org

[3] CORBA, http://www.corba.org

[4] Boost C++ Libraries, http://www.boost.org

[5] J. Klora, T. Coutinho et al. “The architecture of the Alba Control

System”, Proceedings NOBUGS 2008.

[6] SPEC, Certified Software, http://www.certif.com

[7] Qt, http://qt.nokia.com

[8] S.Rubio-Manrique et al, “Dynamic Attributes and other functional

flexibilities of PyTango”. These proceedings.

[9] D.Beltran et Al, “Alba Controls and Cabling database”. These

proceedings.

[10] PyMCA, http://pymca.sourceforge.net

[11] Nexus data Format, http://nexusformat.org

Proceedings of ICALEPCS2009, Kobe, Japan THP016

Control System Evolution

711

