
NEW DEVELOPMENTS FOR THE JCNS NEUTRON SCATTERING
INSTRUMENTS

M. Drochner, A. Erven, L. Fuss, H. Kleines, M. Wagener, FZ Jülich / ZEL,
J. Heinen, D. Korolkov, S. Mattauch, M. Monkenbusch, FZ Jülich / IFF,

Abstract

Since the Juelich ’Dido’ research reactor was shut down
5 years ago, the larger part of its neutron scattering instru-
ments was moved to the new FRM2 neutron source at Mu-
nich, and some newly constructed.

While we used a set of standard components as far as
feasible, we had to accept some compromises due to the
time pressure to get things going. In particular, we have a
number of different graphical and command-line user inter-
faces now which is difficult to handle for users who work
on multiple instruments.

After the initial rush, we are now working towards some
consolidation, both on a common GUI philosophy and a
high-level scripting language.

The design of the new user interface will be presented.

INTRODUCTION

Almost fife years ago, the Jülich research reactor
“DIDO” was shut down and the bigger part of its neutron
scattering instruments was moved to the new “FRM2” neu-
tron source at Munich within about two years. Also, some
new instruments were constructed (as the “SPHERES”
backscattering spectrometer) or are just beginning con-
struction (as the “MARIA” spectrometer).

At that time, we decided on a modular toolbox to use for
all control systems under our responsibility, called “Jülich-
Munich Standard” [1]. This covers the computing architec-
ture (PC compatibles running Linux), a middleware frame-
work (“TACO” from ESRF), process control frontend (eg.
PLCs, CompactPCI, ProfiBUS) and process control clients
(Qt, Python).

But as the term implies — this is just a box of tools, and
there are various ways how to use them. In particular the
UI philosophies, and the look and feel of graphical control
programs differ massively now. Reasons contributing to
this might be:

• Due to the number of instruments and the not always
realistic schedule, all energy was needed to get the in-
struments running at all. UI consistency is considered
second priority in such a situation.

• While only few people got the technical skills to
judge about control system internals, many more have
a funded opinion about user interface design. This
makes the decision process time consuming.

• Some instrument responsibles wanted to keep the fa-
miliar menu structure of old programs which ran the
instrument at Jülich.

It was not until recently that discussions about a common
look and feel of the user interfaces started to take place
in a bigger circle of intrument responsibles and software
experts. Now we are reaching consensus, with the script
interface as a first step.

EXISTING SOFTWARE

Figure 1 shows the software modules covered by the
“Jülich-Munich standard” mentioned above.

TACO
middleware (RPC)

TACO-server

Hardware

TACO-server

Hardware

TACO-Client
(GUI)

TACO-Client
(Scr ipt)

TACO-Client
(Diagnost ic)

...

Figure 1: General structure of the neutron scattering instru-
ment control software — Servers are reused among instru-
ments but clients are mostly instrument specific.

The “TACO” framework is identical for all instruments,
and there is a set of “device servers” which is used all over
the place, due to the standardized frontend hardware and
some abstraction work done by the PLCs. The situation
is quite different at the client side, in the programs which
comprise the user interface. Even while restricting our-
selfes to the Qt and Python tools we’ve standardized to,
we now got:

Germany
Germany

Proceedings of ICALEPCS2009, Kobe, Japan THP030

Control System Evolution

727

• a manual control program for each of about five instru-
ments, implemented in Qt, used for commisioning, re-
pair and various adjustment tasks. These programs
visualize the instrument or parts of it; they are indi-
vidually tailored (except where instruments are very
similar which is the case for two small-angle scatter-
ing machines). Figure 2 shows an example of such a
visualization.

• For the two small-angle scattering machines men-
tioned, a triple of “configuration”, “definition” and
“control” programs. The first one is used by instru-
ment responsibles to define allowed and calibrated
states of the machines, e.g. detector positions and
setpoints of temperature controllers. The second al-
lows users to define series of measurements (so-called
“scans”). It works offline (i.e. not connected to the in-
strument hardware): Parameters can be chosen from
those specified by the “configuration” programs; the
result is put into XML database files which can be
used later when the machine is available. The last one
controls the real measurement. It interprets the XML
definition files (with help of a Python script which
will be mentioned later again), displays basic machine
state, progress within a “scan” and estimated time to
finish.

• Most if not all instruments use a graphical program to
provide a live display of the spectrum currently mea-
sured by the detector(s). These programs are also tai-
lored to the properties of the individual hardware.

• Python is used as scripting language at different levels
of abstraction: Some scripts use the low-level TACO
binding which comes with the software distribution,
some use intermediate Python libraries which hide the
details and provide eg. user friendly axis names and
transformations.

• Python is also used as programming language where
the code remains fixed and gets invoked either as a
shell command or within a bigger framework as in the
small-angle scattering case described above.

In addition there are some user interface programs which
are neither Qt nor Python — either originating from soft-
ware older than our standardisation efforts, or work of in-
dividual instrument scientists with their private ideas and
preferences. It is not always feasible to rewrite those pro-
grams just for the sake of uniformity, but we should try to
get them under the umbrella of a common interface philos-
ophy.

ONGOING WORK AND GOALS

During discussions, it became appearent that it is much
easier to reach a consensus for a scripting language than
for graphical user interfaces. Also, most instrument scien-
tists are willing or able to control their machines by scripts.

Figure 2: Example of an existing GUI TACO client: man-
ual control of the collimation line of a small angle scatter-
ing instrument, implemented in C++ and Qt3.

Thus the scripting language definition is almost completed,
and a preliminary implementation was done, while we still
have varying ideas and ongoing discussion about the GUI
design.

To some surprise (and disappointment for programmers
wanting to bring in modern technology) instrument scien-
tists agreed on a macro language which simply consists
of fixed command words and their arguments. No con-
trol structures were considered necessary, and syntactic ele-
ments should be reduced to a minimum. (So the technically
simplest idea – use of Python as primary macro language
– was out of question. There is the “cmd” module which
allows to integrate such a simple language with Python, but
implementation details are out of scope for this article.)

All axes, temperatures and other parameters should be
handled similarly: They have a logical name, can be moved
to some abstract position, and the status can be read. This
brings some object oriented semantics, and allows to have
only a handful of primary command words.

One syntactic finesse was necessary due to a specific re-
quirement: Because mechanical axes of neutron scattering
instruments often take a long time to position, it should be
possible to move more than one in parallel. This lead to

move omega 7.5; move detector 5

meaning successive positioning, while

move omega 7.5 detector 5

moves both simultaneously. (Semicolons are command de-
limiters just like line ends.)

As mentioned above, measumements are often done as
“scans” with some varying parameters. For simplicity, it
was considered sufficient to limit the ability of the macro
language to scans with at most two dimensions. This can be
handled implicitely within a command word, without need
for loop constructs at language level. So

scan <device> <from> <steps> <to> <t>

would describe a one-dimensional scan, with <from>,
<steps> and <to> being the loop parameters and <t> the
measurement time for each position.

THP030 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

728

This implies that other parameters, e.g. for the detector
to use, are given by the context, by a previously issued

configure <device> <args>

command. (Obviously, the “configure” command is mas-
sively polymorph. because the required parameters differ.)
Since configuration commands can be harmful to the in-
strument if done wrong, there will be “access levels” to
restrict such actions to experts.

For GUI development, some proposals are being cir-
culated. There are different approaches: Some prefer a
uniform top-level structure leading through a number of
panes, from instrument configuration through sample setup
to measurement. Figure 3 shows hoh this could look for an
existing instrument.

Figure 3: A proposed layout for the future instrument con-
trol GUI for all Munich JCNS instruments. The user is
guided through the measurement by vertical menu bars at
the left side.

Others like a big canvas which allows to combine a num-
ber of interface widgets, so that the user has everything
needed in view at the same time. Figure 4 shows an
example of the latter kind.

Figure 4: Another proposed GUI layout. Various compo-
nents can be arranged within a window.

There is no final decision yet, and implementations are
still at mock-up level.

REFERENCES

[1] M. Drochner et al., Relocation and Reconstruction of the
Jülich Neutron Scattering Instrumentation - Challenges and
Plans, PCaPAC2005, Hayama, Japan, 2005.

Proceedings of ICALEPCS2009, Kobe, Japan THP030

Control System Evolution

729

