
A PROPOSAL FOR INTROSPECTION IN EPICS

L.R.Dalesio, D.Dohan, BNL/NSLS II, Upton, NY, U.S.A.
R.Lange, HZB/BESSY II, Berlin, Germany

Abstract
Introspection provides some mapping of function to

process variables. To implement this in EPICS, a service
is required to define these relationships that may be
accomplished external to the control system as an
extension to the directory service. This paper outlines the
requirements and design.

INTRODUCTION
In the Channel Access protocol, the client connects to

Process Variables by providing the name. This requires
that each client specify the name of each PV that is
needed.

Several high level applications have developed
directory services that provide this functionality and are
embedded in the tools. XAL[1] has a PV selector that
goes through the lattice hierarchy and filters through the
functions and locations. By using some advanced
directory service, more general purpose clients could be
developed. This would allow operators to connect to PVs
by some combination of function and location. This is not
introspection in the Object Oriented sense, where
methods are dynamically exposed. It is a service that
allows a system engineer to provide attributes for PVs.
Queries can then be made by attribute that return a list of
PVs that meet the criteria.

This paper discusses the performance goals for the
advanced directory service, the possible data sources for
the SQL based directory service, and the applications that
may be developed using this service..

PERFORMANCE GOALS
The directory service is designed for use in Client

programs that are used for operational tools. It is
envisioned that a typical application would be connecting
to approximately 300 PVs. The typical application will
display the data in some table or plot. From request to
rendering, no more than 4 seconds should pass. The
typical operator station will be a Linux box that does not
have any special hardware. The relational database that
contains these relationships is expected to have entries for
up to 150,000 PVs that each have up to 10 attributes. The
goal is to return the list of PVs in under 1 second. This
leaves 75% of the time budget for the Channel Access
Client connections and rendering of the display.

The displays must support up to 600 channels being
updated at 5 Hz. The most demanding application that we
have considered is the orbit display, which plots 300
BPMs, reading X position and Y position. Tests are
underway to evaluate the performance of various aspects
of Control System Studio from DESY[3] and SNS[4]. Of

concern are the Eclipse framework and the
communication data plugs.

DATA SOURCES FOR THE ADVANCED
DIRECTORY SERVICE

The directory service is planned as an independent SQL
database that provides a set of interfaces for construction
and inquiries. Two possible sources of information are
scripts that sue the naming standard to populate the table
or scripts that extract the information from the IRMIS
database.

Figure 1: NSLS II nomenclature standard.

NSLS II has a nomenclature standard[5] in place. With
a good name standard, an attribute table may be derived.
The system, subsystem, and signal could be used to derive
functions from the signal (high vacuum, Xpos, Ypos), as
well as the system: (linac, booster, storage ring). This
approach would likely produce more entries in the
advanced directory service then are desired. A method
could be used to limit which signal domains or signal
types are desired. No work has been done on this
approach.

Figure 2: IRMIS ERD – grey are the PV tables.

The IRMIS[6] database has been extended to support
the name alias and attribute functionality. A snippet of
the data contained in these tables would look like this:

S:C30-VA:G1<SGV:A>Pos-Opn.VAL
 894 meters,
 BeamIntercept, StorageRing

Proceedings of ICALEPCS2009, Kobe, Japan THP036

Control System Evolution

739

S:C06-D:G3<Screen>Pos-In.VAL
 92 meters,
 BeamIntercept, StorageRing
S:C06-D:G3<BPM:A>Pos-X.VAL
 92.5 meters,
 XPos, StorageRing
S:C30-D:G1<BPM:A>Pos-X.VAL
 894.5 meters,
 XPos, StorageRing

A script could easily copy this information into the SQL
database used for the advanced directory service.

ACCESS TO THE ADVANCED
DIRECTORY SERVICE

A Representational State Transfer (REST) style service
is provided to allow network access to this directory
service. This service layer is developed using JDBC.

APPLICATIONS FOR THE ADVANCED
DIRECTORY SERVICE

The advanced directory service can be used to create
general purpose clients without knowledge of all of the
individual PVs. These applications could include user
interfaces such as plots, save/restore sets, archive sets,
and high level physics applications.

Figure 3: Possible application for adv dir serv.

For instance, a waterfall plot application could use an
expression of functions and attributes to give a time
elapsed view of a given subsystem. The call sequence
would be:

advDirectorySearch(att_list, chan count, chan_list)
ca_serach_and_connect(each chan in chan_list)
ca_monitor(each chid returned from chan_list)
plot(chan_list,values connection information, values

returned from channel access)

By providing this service, general purpose clients and
scripts could be easily written to produce very versatile
tools for the operators.

PERFORMANCE TEST
A demonstration SQL database was used to test the

performance by populating the table with 150,000 PVs.
Each PV was given six attributes: system, device, unit,
position, counter, and cell. A REST service was created
using Netbeans as the development environment and
Glassfish as the web server. Using the web service, a
request was made to return 2,000 channels. To return only
the first 2,000 channels and their properties took
approximately 100 milliseconds. The next test checked
for specific attributes. The initial test for 2,000 channels
with attributes, took between 2 seconds and minutes. This
was the result of JPA classes creating bad SQL. JDBC
was then used. This gives direct control over the SQL.
These direct SQL calls need to be tested. The expectation
is that the performance should be well within the goal of 1
second. We will also test the performance when all of the
data is made memory resident.

ACKNOWLEDGEMENT
The work is being done as follows:
IRMIS: Don Dohan, Gabriele Carcassi, (BNL)
Implementation: Ralph Lange (HZB/BESSY II)
High Level Applications: Kunal Schroff (BNL)

CONCLUSIONS
The initial tests for using web services to search a table

with PVs and attributes have shown that the desired
performance is achievable. The architecture allows for
different methods of creating the directory. Over the next
6 months we will complete the tools to create the table,
determine which operator applications to develop and
decide which environment will be used to deploy them.

REFERENCES
[1] J. Galambos, C et. al., “XAL – The SNS Application

Programming Infrastructure”, EPAC 2004,
http://accelconf.web.cern.ch/AccelConf/e04/PAPER
S/THPLT168.PDF.

[2] J.O. Hill, “Channel Access: A Software Bus for the
LAACS”, ICALEPCS ‘89, Vancouver, 1989.

[3] M.R.Clausen, et.al. (DESY) “Control System Studio
- Integrated Operating, Configuration and
Development”, This conference. Paper THC002.

[4] D.J.Armstrong, J.D.Purcell*, K.-U.Kasemir (ORNL)
X.H.Chen (ORNL RAD), “CSS - We didn't Invent It,
We Made It Better.”, This conference. Paper
TUP010.

[5] Johnson, E., “NSLS II Nomenclature Standard”,
National Synchrotron Light Source II Internal
Document, 2009.

[6] D.A. Dohan, N.D. Arnold, “IRMIS”; http://www.
aps.anl.gov/epics/irmis.

THP036 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

740

