
XAL STATUS REPORT - FALL 2009*

Thomas Pelaia II, Christopher Allen, Andrei Shishlo, ORNL, Oak Ridge, TN 37831 U.S.A.

Abstract
XAL is a collection of frameworks for building

accelerator applications at the Spallation Neutron Source.
We discuss progress in easing the adoption of XAL for
use at other facilities by providing improved
documentation, eliminating several third party jars and
deprecating and removing obsolete code. New XAL
features will be introduced as well as recent application
additions and enhancements.

INTRODUCTION

XAL[1] is the software infrastructure for accelerator
physics applications and services at the Spallation
Neutron Source (SNS) in Oak Ridge. XAL contains an
accelerator device hierarchy, an application framework
[2], a control system adaptor, an accelerator physics
model [3] and general application tools.

The number of XAL applications has grown from a
handful of applications for commissioning in 2002 to over
five dozen applications, today.

While we continue to build new applications and
introduce new technology, recent efforts have focused on
code maintenance and easing adoption. Realization of this
last goal has made XAL more feasible for use at other
facilities.

This paper reviews XAL Status highlights since the
most recent status reports [4,5].

XAL ADOPTION

As more developers both inside SNS and at other
facilities adopt XAL, we are working to improve their
experience. The biggest roadblock for adoption at other
facilities has been the difficulty in obtaining third party
packages on which XAL depends, so we have made a
significant effort to address this issue. Furthermore, we
have cleaned up code, fixed and added documentation,
r educed in i t i a l con f igu ra t ion and enhanced
communication.

Third Party Packages
Do to licensing restrictions, we don’t have permission

to redistribute all requisite third party jars with XAL
which is distributed under the friendlier BSD license.
Furthermore, the plotting packages were commercial.
Since this had been a major obstacle for adoption of XAL
at other facilities, we made efforts to address it.

We eliminated the dependence on all commercial
packages by removing some obsolete applications, and
updating others to use the XAL plotting package [6].
Likewise, we have removed obsolete code which had
dependence on other third party packages. We began with
twenty-nine third party jars in July 2008, and have

reduced the count to eleven. We also obtained explicit
permission from some vendors to redistribute their
packages with XAL. Finally, we clearly documented the
version and source of each third party jar file used in
XAL.

This effort not only makes it easier for others to adopt
XAL, but generally makes it easier for us to maintain
XAL. For example, we determined that one of the third
party jar files had caused XAL applications to crash upon
startup under Java 6 on Linux. That jar file has since been
removed.

Code Maintenance
XAL has been in use and under development for over

seven years. Over this time, many applications, packages
and classes have become obsolete, and in some cases the
original developers of these constructs have left the
project. Keeping these obsolete items in the project
carries overhead such as dependence on third party
packages that aren’t used elsewhere, dependence on other
obsolete classes and packages within XAL, maintenance
to keep them in compliance with the current build and
overall debris. XAL is now leaner due to our efforts to
remove obsolete constructs.

We have removed eleven obsolete applications which
has given us flexibility to remove other obsolete
packages. UML files had cluttered the project yet were
never maintained or generally adopted, so they have been
removed. XML DOM traversal classes have been
removed since their use was limited and had become
obsolete and they required a third party package which
was incompatible with Java 6 on Linux. Many other
obsolete classes and packages have been removed.

We have an ongoing effort to reduce and cleanup code.

Documentation and Communication
When one is investigating or just getting started with a

new development platform, it is desirable to read
documentation about the technology and be kept in the
loop about the future directions of the platform. While
Java has a convenient mechanism (Java Doc) for
generating API documentation from specially marked
comments in the code, the developer must maintain
consistency with the API and avoid introducing text
which corrupts the generated HTML documentation. The
former is easily identifiable from Java Doc warnings, but
the latter can go unnoticed until one attempts to read the
documentation and finds that pages are broken or entire
sections of documentation are missing.

XAL had over 300 Java Doc warnings, and we
eliminated all of them. That addressed the consistency
issue at least in its simplest form. Furthermore, we fixed
numerous errors resulting in corrupted HTML.
Additionally, we publish and maintain the Java Doc on
our XAL website. We also generate an indexed
documentation set from the Java Doc which is then

*ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department
of Energy under contract DE-AC05-00OR22725

THP075 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

812

published via a RSS feed. Developers can subscribe to
this feed to pull into their IDE the latest documentation
which supports rapid API lookup.

The official XAL website, http://www.ornl.gov/~t6p/
Main/XAL.html, contains the documentation discussed
above as well as a news feed to keep up with the latest
XAL news, an introduction to XAL, a quick start guide
and links to resources including tutorials. The quick start
guide has been valuable in rapidly getting XAL installed,
built and running for new developers.

CORE MODIFICATIONS

Key-Value Table Model
Creating table models from scratch in Java can be

cumbersome. It is common to display a table representing
an array of objects of a common class where each row is
mapped to an object in the array and each column
corresponds to a getter method to be evaluated on the
objects. We have developed a mechanism to generate
table models dynamically for this common pattern.

KeyValueTableModel is a table model class we created
to represent a table model from a list of objects and a
(variable argument) array of named properties. Each
object in the supplied list represents a row in the table
model. The array of named properties are Strings each of
which names a path of getter methods to be called on each
object and mapped to a table column. A path is
represented as a string of keys separated by dots and
corresponds to a calling chain on an object. Each key
corresponds to the name of a method with “get”
prepended if necessary to make a match. For example,
suppose a hypothetical class called “Bounds” has a
method to get the size, size(), as an object which in turn
has methods to get the width and height called getWidth()
and getHeight(). The property, “size.width”, applied to an
object would correspond to a call on that object like:
object.size().getWidth(). In this case, the table model
column title corresponding to the property is
automatically generated to be “Size Width”, but can be
specified manually if desired.

Table models matching the common pattern described
can be generated with as little as one line of code rather
than a page of code. Furthermore, the subclass,
KeyValueFilteredTableModel, supports dynamic filtering
of displayed objects based on matches of property values
against entered text in a text component.

Database Configuration
Many of our applications and services require access to

the SNS global database. The mechanism to support a
database connection was a connection dictionary
properties file which supplied the URL of the database
server, the user name and password. However, recent
changes to our database requires support for multiple
accounts. Furthermore, it would be convenient for
development to offer the option to specify a development
or production database server.

Significant changes have been made to the XAL
database infrastructure to support multiple accounts and
multiple servers. The connection dictionary properties file

has been replaced with a database configuration XML
file. A connection dictionary can be generated from the
database configuration by requesting a server and an
account each of which have defaults.

This new database configuration architecture allows
applications more flexibility while meeting the
requirements for multiple accounts.

Software Device Types
Devices in the accelerator hierarchy each have an

associated device type (e.g. Horizontal Corrector) which
indicates the role of the device and the hardware type.
However, a device of a given hardware type may have
different software and hence a different control interface
than other devices of the same hardware type. For this
reason, we have added a property to the accelerator node
(and correspondingly to the database) which indicates the
software type of a device. Currently this property is being
used for wire scanners and it allows new wire scanner
software to be tested on a subset of devices before being
applied to all of them.

NEW AND MODIFIED APPLICATIONS

Several applications have been modified with new
features and to reduce configuration and maintenance.

Launcher
The Launcher is an application which displays and

launches applications and scripts on demand. The
previous launcher required the developer to maintain a
bash script for each executable (application, jython script
or jruby script) to be launched and to enter the bash script
path and description of the executable to be launched.
Furthermore, as the number of applications and scripts
had grown, it became difficult to navigate through the
long list of applications and scripts to find the desired
one. The Launcher has been significantly modified to
address these issues.

Since all XAL application products are built to the
same directory and the scripts reside in just a few
directories, the new Launcher simply records these
directories as search paths. By default the Launcher
determines the application search path based on the
current location of itself thus requiring zero configuration
for launching applications on the current host.
Furthermore, the Launcher looks into each application’s
jar file to locate the “About.properties” file that every
XAL application has and parses it to get the description
and full application name. For scripts, it simply parses the
header and attempt to extract the description from the
comments.

All applications and scripts are displayed in a table
showing the executable name, type, description and file
path. A filter text box filters the displayed executables
against each of these fields allowing for quick access to
the desired application or script.

Custom launch commands may be applied to
applications and scripts based on file name pattern
matching. For example, you could specify different
launch command templates for jar, jython and jruby files.
Just as with the original version, you can specify a list of

Proceedings of ICALEPCS2009, Kobe, Japan THP075

Software Technology Evolution

813

hosts on which to run the executables in a round robin
pattern for load balancing.

Figure 1: Launcher

Virtual Accelerator
The Virtual Accelerator [7] has been instrumental in

offline testing of our applications. It simulates a live
machine by running a local channel access server and
updating diagnostic values in response to magnet changes
using the online model.

We have modified the Virtual Accelerator to use the
new Java Channel Access Server which was recently
made available in Channel Access Java by Cosylab
(http://caj.cosylab.com/index.html). The virtual
accelerator now runs with zero configuration since it no
longer depends on an external channel access server.

XYZ Correlator
The XYZ Correlator application monitors and displays

channel access events correlated by time stamp. This
application has undergone significant modification.
Plotting is now done using the XAL plotting package. The
interface for specifying process variables to monitor is
more efficient and consistent with other XAL
applications. While it can display a buffer plot of
correlations for two or three process variables, there is no
limit on the number of process variables that can be
monitored. A report of correlations over all specified
process variables can be exported.

Figure 2: XYZ Correlator

FUTURE PLANS

We continue to work on core enhancements, application
development and bug fixes along with cleaning up code
and documentation. The Wire Scanner and Wire Analysis
applications are being merged into a single application
that is being written from scratch to improve the overall
user experience and provide better fits. A distributed agent
system is currently under development. We are migrating
XAL to Java 6. The Operations group is developing a
sequencer application. Channel access for accelerator
nodes will support batch channel operations offering the
opportunity to dramatically improve performance. We
will design a beam simulator that will operate on field
maps.

REFERENCES
[1] John Galambos et. al. , “SNS Application

Programming Environment”, EPAC 2002, Paris,
France, June 2002; http://www.jacow.org/e02/
PAPERS/THPLE021.pdf.

[2] Thomas Pelaia II, XAL Application Framework and
Bricks GUI Builder, ICALEPCS 2007, Knoxville,
TN, October 2007; http://accelconf.web.cern.ch/
AccelConf/ica07/PAPERS/TPPA09.PDF

[3] C.K. Allen et. al., “A Novel Online Simulator For
Applications Requiring a Model Reference”,
ICALEPCS 2003, Gyeongju, Korea, 2003; http://
accelconf.web.cern.ch/AccelConf/ica03/PAPERS/
WE116.PDF

[4] Thomas Pelaia et. al., “XAL Status”, ICALEPCS
2007, Knoxville, TN, October 2007; http://
accelconf.web.cern.ch/AccelConf/ica07/PAPERS/
MOPB02.PDF.

[5] Thomas Pelaia et. al., “XAL Status Report Spring
2009”, EPICS Collaboration Meeting, Vancouver,
Canada, May 2009; http://isacwserv.triumf.ca/
epics09html/FR1/XALStatus Report 2009.pdf.

[6] A. Shishlo et. al., “Java Swing-Based Plotting Package
Residing Within XAL”, ICALEPCS 2007, Knoxville,
TN, October 2007; http://accelconf.web.cern.ch/
AccelConf/ica07/PAPERS/TPPA08.PDF.

[7] A. Shishlo et. al., “The EPICS Based Virtual
Accelerator – Concept and Implementation”,
Proceedings of the 2003 Particle Accelerator
Conference, Portland, OR, May 2003; http://
accelconf.web.cern.ch/AccelConf/p03/PAPERS/
WPPE017.PDF.

.

.

THP075 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

814

