
MULTI-PLATFORM PROCESSOR FRAMEWORK FOR DATA ANALYSIS,
DATA ACQUISITION AND SIMULATION

N. Xiong, P. Hathaway, T. Lam, N. Hauser, ANSTO, Lucas Heights, Australia

Abstract
The multi-platform processor framework (MPF) is a

model-based environment for developing data acquisition,
data analysis, and simulation applications for neutron
scattering facilities in the Bragg Institute, ANSTO. This
open-source project is designed to help developing,
integrating and reusing implementations from multi-
domains. The processor framework has a data-centric
architecture which helps to maintain quality and
integration. It provides templates for developers to
contribute modules in different domains and in different
programming languages. These modules can be put
together by recipe files in the deployment or can be
created at runtime by the users to perform different tasks.

module blocks. Users that familiar with different
programming languages can work together on the same
project supported by this framework.

INTRODUCTION
The multi-platform processor framework is a feature

project under the Gumtree application software at the
Bragg Institute, ANSTO. The Gumtree software is an
open source and multi-platform graphical user interface
application for performing neutron scattering experiments
[1]. As an important feature, MPF provides service to
both developers and users in helping them to design data
acquisition and data analysis procedures for the scattering
experiments. The implementation of the application is in
Java language. It is also based on Eclipse RCP*
technology. Such plug-in architecture simplifies software
development and deployment.

THE MISSION
The users of the neutron scattering facilities can be

from different research fields. They can be physicists,
chemists, biologists, and so on. They may not be familiar
with how to use the instruments, or not even know what is
going to turn out as a result. Usually there will be an
instrument scientist to help them carrying out the
experiment. But it is still a difficult task due to the
complexity of the experiment and that the preparation
time of each experiment should be very short. Thus, the
software we provide to do the experiment must be very
easy to learn. On the other hand, because each user will
carry out the experiment for a different purpose, there
must be a big flexibility in the software.

There are two types of tasks in the neutron scattering
experiments, the data acquisition tasks and the data
analysis tasks. Each type of tasks has different

requirements.

• In the data acquisition tasks, the user interface needs

to be simple and neat. It is necessary to use extra
protection to prevent the user from making mistake.

• In the data analysis tasks, the user interface can be
complex and flexible to meet different requirements.
Users should be able to easily contribute their own
code to perform data analysis. A powerful
mathematics library must be provided. Users should
be able to create their own graphical user interface
easily as well.

PROCESSOR FRAMEWORK

Concept
The MPF is a project to match the requirements

described in the above section. MPF is a number of
processors linked together to carry out an experiment
task. Each processor of the MPF does a single small
work. If chained together, they can carry out a complex
task as designed. It is very easy to enable or disable a
single processor so that it is masked out from the whole
task. There are processor libraries contributed by the
software developers and users. A user can simply pick the
processors he need, chain them together and run it.

Using MPF, the software application can create certain
number of framework instance to carry out different tasks.
Some of the framework instances are designed by the
software developers, and configured by the users. Such
MPF instance can be well tested so that run with higher
reliability. Using this type of MPF instances in data
acquisition tasks can prevent the user from making
mistakes. A fixed graphical user interface is usually
coupled with such MPF instance so that the user always
has a clean, familiar environment to work with.

Other MPF instance can be designed by the user
themselves. A design interface is provided to the users to
easily contribute their code. Following the templates, the
user simply chooses the type of language he is familiar
with. And he can write software code to do analysis on
the inputs of the processor, by using the mathematics
library provided by the platform. Such analysis procedure
creates outputs for the processor. The outputs will then be
passed to the next processor in the chain. Such feature of
MPF is mostly used in data analysis tasks. Users can use
such way to carry out analysis procedures that are not
provided at the software deployment time.

Structure
There are three types of basic components in MPF, the

processor, the port, and the connector.
 __

* Rich Client Platform,
http://wiki.eclipse.org/index.php/Rich_Client_Platform.

For the user, it provides a convenient way of reusing

Proceedings of ICALEPCS2009, Kobe, Japan THP076

Software Technology Evolution

815

• The processor is the holder of the processing code.
The processing code can be either generated at
deployment time, or at runtime. Code generated at
runtime is usually contributed by the user. The
processors can also be classified into two types based
on their complexity, simple processors and
composite processors. A simple processor is designed
to only carry out a unit task. Such processor has
properties of sharable and reusable. A composite
processor is a processor that contains other
processors. Use such type of processors to carry out
a more complex, but also sharable task.

• The port is the interface to access the fields of the
processor. When the processor is processed, the
status information such as the inputs and the results
are held by the fields
expose these fields so that they become accessible.
There are three types of ports. The IN ports, the OUT
ports, and the VAR ports.
o The IN ports access the fields of the processor

that are used as inputs. A processor can have as
many as possible IN ports. When all the IN ports
are set with a value, the processor starts
processing.

o The OUT ports access the fields of the processor
that are used as outputs. After the processor gets
processed, it will set the OUT ports one by one.

o The VAR ports access the fields of the processor
that are used as arguments. These arguments
have default values and can be modified at any
time.

• The connector is the link between two ports. The
connector has direction. The port that the connector
starts from is called Producer. The port that the
connector ends with is called Consumer. When the
value of the Producer is set, it immediately passes
the value to its Consumers. A Producer can have as
many as possible Consumers. A Consumer can also
have as many as possible Producers linked with it.
Both the Producers and the Consumers can be any
type of ports.

• The framework is a special type of composite
processor. It is the instance of the MPF that holds
other processors. Only the ports attached to the
framework are exposed to be accessed from outside.
Figure 1 shows an example of MPF instance. The
framework has two simple processors included, P1
and P2.

• Recipe file is the XML description of the MPF
instance. The file is human readable. It contains
information about the framework structure and the
default values of the VAR ports. In the MPF
application, the application can create multiple
instances of framework from a single recipe file.

Figure 1: MPF example.

RUN THE PROCESSOR
The processing of an MPF instance is in a single thread.

However you can run multiple MPF instances at the same
time. In the example shown in Fig. 1, setting a value to
port I3 will trigger the processing of the processor chain.
If there are more than one IN ports attached to the
framework, all of them need to be set in order to trigger
the running of the processor chain.

In the above example, port I3 passes its value to port I1,
which triggers running of P1. As a result, it will output
values to port O1 and O2, separately. Once port O1 gets a
value, it passes the value to port V2. That changes the
argument field of P2. After port O2 gets the value, it
passes the value to port I2, which triggers running of P2.
Finally, P2 will create result to port O3. The final result
can be reached by acquiring the value of port O5.

In a more complex example, as shown in Fig. 2, there is
a composite processor, P4 in the framework. Since there
is no IN port exists for the framework, running of the
MPF will start from the first processor listed in the recipe
file. In this case, it is P4. This task is finally assigned to
P1. After processors P1 and P2 get processed, it outputs
the results to port O03 and port O05. Since port O05 is
the producer of port I01, this will trigger the processing of
P1. The chain of P1 and P2 becomes a loop. In each run
of the loop, port O04 will pass the result of P4 to port I03.
This triggers the running of P3. Port O08 gets a result.

Figure 2: Processor loop example.

of the processor. Use ports to

THP076 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

816

GRAPHICAL USER INTERFACE
Figure 3 shows an example of using the generic graphical

user interface of MPF. It is about a processor chain to
carry out data analysis on neutron scattering experiment
data. The chain consists of processors that do the data
collection, efficiency correction, geometry correction, and
so on. User can use this interface to configure and run the
MPF instance. In the GUI, the operation blocks are
automatically generated for the processors in the MPF. To
change the value of the VAR ports, simply click on the
block. The user interface for each VAR port gets created
based on the type of the value.

This example shows an important feature of the MPF
application. Users only need to contribute code for
analysis algorithm. They do not need to care about how to
code the graphical user interface, because the application
will create it automatically. A design interface is also
provided for the user to contribute his analysis code and
wrap it with a processor. The GUI also provides tools for
user to chain the processors together.

Figure 3: MPF graphical user interface.

Figure 4 shows an example of a customised user interface,
which performs data correction and reduction.

Figure 4: Customised graphical user interface.

SUMMARY
The MPF is an application to simplify the software

designing for neutron scattering experiment. The
developers can use this module to provide reliable
experiment control and analysis algorithms. It also
integrates the user’s contribution easily. This application
has been applied in the software for carrying out
experiments in four different neutron scattering
instruments at ANSTO. Future work about this project is
to provide a better design GUI for the user, and to support
more programming languages.

REFERENCES
[1] T. Lam, N. Hauser, A. Gotz, P. Hathaway, F.

Franceschini & H. Rayner, “GumTree-An integrated
scientific experiment environment”, Physica B 385-
386, p. 1330-1332 (2006).

Proceedings of ICALEPCS2009, Kobe, Japan THP076

Software Technology Evolution

817

