
A TASTE OF CAFE

J. Chrin, G. Prekas, Paul Scherrer Institut, Villigen PSI, Switzerland

Abstract

CAFE (Channel Access interFacE) is a new C++ library
that provides a multifaceted interface to the latest CA func-
tions released with EPICS version 3.14. Functionality for
both synchronous and asynchronous interactions has been
implemented for individual, groups and collections of re-
lated channels. An abstract layer that addresses require-
ments dictated by beam dynamics applications has also
been provided. An XML-based configuration mechanism
provides a convenient framework for users to define and
initialize CAFE objects, e.g. for data analysis and/or vi-
sualization. Rules to flag members of a group or collec-
tion of CAFE objects, effectively modify a transaction to a
selected subset, thereby allowing users to readily adapt to
changes in a system during operation. CAFE is intended
for use in C++ frameworks such as Qt and presents itself as
a candidate for Event Processing Agents (EPAs) that, for
example, capture machine physics data for inter-shot anal-
ysis at the SwissFEL. In this respect, the role of CAFE in
aggregating low-level hardware events to produce events
that supply summarized data to a Data Distribution Service
(DDS), is demonstrated.

POURQUOI CAFE?

Channel Access (CA) is the communication protocol
dedicated to EPICS and optimized for the transfer of large
amounts of small data packets. The CA client library pro-
vides remote access to Process Variables (PVs) residing in
the EPICS Input Output Controller (IOC). Application Pro-
gramming Interfaces (APIs), such as EZCA (E-Z Channel
Access) [1] simplify the task of accessing control data by
suppling a user-friendly interface to the native CA API.
Other APIs, such as CDEV (Common DEVice) [2], pro-
vide another layer of abstraction to the CA package and
with it certain enhanced features.

However, many of these APIs are not rigorously main-
tained and do not necessarily reflect the advances in CA
functionality. Some APIs appear to be frozen to deprecated
functions with little likelihood of the code being brought
into compliance with the new CA standard. The most re-
cent EPICS release, for instance, implements multithread-
ing and an improved handling of lost connections. Applica-
tions wishing to benefit from these new features would best
be served through an in-house API that hooks into the new
CA classes. Furthermore, such a development not only al-
lows us to keep in step with future EPICS releases [3], but
also presents the opportunity to provide abstract interfaces
that are a better match to beam dynamics requirements set
by next generation machines, such as the SwissFEL.

A TASTE OF CAFE

CAFE (Channel Access interFacE) [4] is a new C++
library that provides a multifaceted interface to the new CA
functions released with EPICS version 3.14 and onwards.
Functionality for both synchronous and asynchronous in-
teractions, i.e. monitors, is provided for both individual
channels and groups of channels. Operations with both im-
plicit and explicit data types have been implemented and an
error handling mechanism raises an exception in the event
of a failed transaction. More intricate interfaces tailored to-
wards the needs of beam dynamics applications have also
been introduced. These include the use of collections that
view related devices as a logical software entity [2]. Rules
to flag certain members of a collection is a novel feature
that can be applied to effectively reduce the collection to
a selected subset. This allows users to readily adapt to
changes in the system during operation.

The aggregation of channels into groups (of which a col-
lection is a special type) allows several requests to be de-
livered with greater efficiency within a single method invo-
cation. Such an approach would be usefully employed in
retrieving a snapshot of selected machine data; in a pulsed
machine such as the SwissFEL, this will further facilitate
in capturing data correlated to a given pulse (or shot).

Data pertaining to a group are encapsulated within a
CAFE defined data type, PVGroup, which holds a sequence
of the CAFE object, PVDatum, itself a container for se-
lected PV data (device, attribute, value(s), status, rule, etc.).
The data holder for the PV value is a union of CAFE data
types, which permits a common representation to be used
for data types passed as arguments to CAFE methods.

XML based configuration files provide a convenient
framework for defining collections and groups and stor-
ing their associated members. Table 1 lists an XML file
that defines a collection formed from a series of Digital
Beam Position Monitors (DBPMs) and advertises their de-
vice attributes. CAFE collection XML files are typically
generated from a master XML file representing the entire
accelerator. Transactions on CAFE collections are invoked
through simple intuitive method invocations that reference
collections through their identifier (cDBPM in Table 1).

Table 2 illustrates how a CAFE group may be defined in
XML with a minimal set of tags. A group may be created
from any combination of collections and individual chan-
nels. CAFE parses the XML group file, expanding collec-
tions into their PVDatum constituents, and initializes the
resulting PVGroup. A failed operation on a group or col-
lection member raises an exception only after all other op-
erations on members have been attempted; data from suc-
cessful transactions are returned with the exception.

Proceedings of ICALEPCS2009, Kobe, Japan THP078

Software Technology Evolution

821



Table 1: XML for CAFE Collections

<cafe:config xmlns:cafe=

"http://fel.web.psi.ch">

<cafe:collection id=“cDBPM” >

<description>Definition of a collection

of DBPMs for the 250 MeV Injector

</description>

<attributes>

<attribute> X </attribute>

<attribute> Y </attribute>

<attribute> I </attribute>

<attribute>ENABLE</attribute>

...

</attributes>

<member>

<device> FINSS-DBPM10 </device>

</member>

<member>

<device> FIND100-DBPM10 </device>

</member>

<member>

<device> FINSB01-DBPM10 </device>

</member>

...

</cafe:collection>

</cafe:config>

Table 2: XML for CAFE Groups

<cafe:config xmlns:cafe=

"http://fel.web.psi.ch">

<cafe:group id=“gDBPM” >

<description>Definition of a PVGroup for

configuring the 250 MeV Injector DBPM EPA

</description>

<collection>

<id> cDBPM </id>

<attribute> X </attribute>

<datatype> CA DOUBLE </datatype>

</collection>

<collection>

<id> cDBPM </id>

<attribute> Y </attribute>

<datatype> CA DOUBLE </datatype>

</collection>

...

<member>

<device> FIN-PCT </device>

<attribute> CURRENT </attribute>

<datatype> CA DOUBLE </datatype>

</member>

</cafe:group>

</cafe:config>

The XML configuration mechanism for initializing
CAFE objects allows complex interactions to be initiated
with relative ease through specially drafted CAFE meth-
ods. The following describes a test application that demon-
strates the role of the CAFE API in establishing asyn-
chronous connections to a collection of devices. The moni-
tored data forms the input to agents that aggregate and anal-
yse the data for publication to high-level applications. The
operating system in use here is Scientific Linux 5.

EVENT DRIVEN APPLICATIONS WITH
XML, CAFE, DDS AND Qt

CAFE is anticipated for use in C++ frameworks such as
Qt or ROOT and presents itself as a candidate for event
processing agents (EPAs) [5] that, for example, capture
machine data for inter-shot analysis at the SwissFEL. An
example application is presented that aggregates simulated
data from DBPMs to produce events that supply summa-
rized data to interested clients using a publish/subscribe
paradigm defined by the Object Management Group’s Data
Distribution Service (OMG-DDS) [6].

The software architecture is illustrated in Fig. 1 and com-
prises a CAFE/DDS based EPA for data aggregation, anal-
ysis and propagation, and an application layer for the dis-
play of summarized data. The OMG-DDS implementation
is the OpenSplice (Open Source) Community Edition [7].
The use of DDS to transmit EPICS data is also the subject
of other independent work presented at this Conference [8].

The EPA is configured from an XML file (Table 2) that
defines the CAFE PVGroup object to be used as an in-
put/output argument to the corresponding CAFE methods.
The group is first instantiated by reference to it’s identifier,
gDBPM, and a callback mechanism to the group’s associ-
ated PVs is then established with a single CAFE method
invocation.

The EPA uses event pattern rules to aggregate and cor-
relate partially ordered sets (posets) of DBPM data in its
input, and creates an high-level event that summarizes the
aggregated data for output to DDS.

The DDS is a middleware standard that provides an in-
frastructure for real-time data distribution between multiple
publishers, “DataWriters”, and subscribers, “DataRead-
ers”, that share an interest in a “Topic”, which is the ba-
sic data structure expressed in OMG’s Interface Definition
Language (IDL). A Quality of Service (QoS) framework
further provides management of a rich set of attributes
that govern reliability, persistency, filtering and ordering of
events. In the event delivery model of Fig. 1, the EPA pub-
lishes events to the DDS DataWriter residing in the DDS
daemon on the publisher’s node. The DataWriter publisher
subsequently broadcasts (or multicasts as in our configura-
tion) the events across the network. The events are inter-
cepted by those nodes for which a local DDS daemon has
the associated subscription. The event data are then passed
to the subscriber’s DataReader(s) from where they may be
retrieved by the client application(s).

THP078 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

822



Figure 1: Aggregation of low-level hardware data with
CAFE and propagation of summarized data through DDS.

Figure 2: A graphical display of simulated DBPM data
built from the Qt (v. 4.3.3) and Qwt (v. 5.1.1) libraries; data
are received passively through the assigned DDS Topic.
The application is dynamically configured through XML
and DDS.

A Qt/Qwt based client application (Fig. 2) displays the
summarized data received through DDS. The Qt toolkit is
presently being investigated for the development of Graph-
ical User Interfaces (GUIs) in C++. The Qwt class library
provides a necessary extension for the development of
scientific applications that require, for example, multi-
dimensional plotting capability. The Qt/Qwt toolkit is fast
and concise, and the test application has proven to be stable
and robust even when placed under heavy load; indeed data
continues to be displayed effortlessly at submission rates of
100 Hz, even as the application window is playfully resized
by the user. The Qt/Qwt toolkit is also the basis for EPICS
client application development at KSTAR [9].

APRES CAFE

A first serving of CAFE is scheduled for the commis-
sioning of the 250 MeV Injector test facility for the Swiss-
FEL, the first components of which will be online in De-
cember 2009. A subsequent refactoring of the code is an-
ticipated with the intent of making the internal structure
more comprehensible and easier to maintain; new function-
ality as dictated by user requirements will also be imple-
mented. Further CAFE-DDS based EPAs will be added for
the aggregation, analysis and propagation of data sets cor-
responding to the various accelerator nodes, such as mag-
net types and radio-frequency cavities. An EPA that pro-
vides data for online modeling is also foreseen.

Since CAFE is written in C++, bindings to declara-
tive and 4th generation languages are also made possible.
PyCafe, a CAFE interface to Python is in preparation with
basic read/write functionality already implemented. GUI
applications can similarly be developed using PyQt and
PyQwt, the respective Python bindings for Qt and Qwt.

REFERENCES

[1] N.T. Karonis. EZCA Primer. Internal Document, Argonne
National Laboratory, Jan 1995.

[2] J. Chen et al. CDEV: an object-oriented class library for
developing device control applications. ICALEPCS 1995,
Chicago, Illinois, USA, 29 Oct - 3 Nov 1995.

[3] A. Johnson and R. Lange. Evolutionary plans for EPICS ver-
sion 3. In These Proceedings. ICALEPCS 2009, Kobe, Japan,
Oct 2009.

[4] J. Chrin. A Taste of CAFE. SLS Internal Document, 2009.

[5] M. Böge and J. Chrin. An event service for the propagation
of data. SLS Note: SLS-TME-TA-2004-0255, Dec 2004.

[6] OMG-DDS. http://portals.omg.org/dds/.

[7] OpenSplice. http://www.opensplice.com/.

[8] N. Malitsky et al. Prototype of a DDS-based high-level ac-
celerator application environment. In These Proceedings.
ICALEPCS 2009, Kobe, Japan, Oct 2009.

[9] S. Baek et al. KSTAR widget toolkit using Qt library for
the EPICS based control system. In These Proceedings.
ICALEPCS 2009, Kobe, Japan, Oct 2009.

Proceedings of ICALEPCS2009, Kobe, Japan THP078

Software Technology Evolution

823


