
DYNAMIC ATTRIBUTES
AND OTHER FUNCTIONAL FLEXIBILITIES OF PyTango

 S. Rubio-Manrique, T. Coutinho, R. Suñé, CELLS-ALBA Synchrotron, Barcelona, Spain
E. Taurel, ESRF, Grenoble, France

Abstract
Abstract ALBA, member of the Tango Collaboration, is

a third generation Synchrotron under construction near
Barcelona. Development of ALBA Control System soon
required of highly customizable interfaces for the multiple
PLCs, Vacuum and DAQ equipments being tested. On-
the-run dynamic attribute creation, customized
calculations, configurable state composing and attribute-
grouping have been achieved applying Python; a dynamic
object-oriented language with an easy syntax accessible to
operators. Other new features, such as multiple device
classes inheritance, have been added to the Control
System and allowed integration of HW API's and high-
level tools in the same process. PyTango, the Python API
of Tango, is actually the common platform for most of
User and Hardware interfaces developed at ALBA.

INTRODUCTION
Many features of modern languages―like dynamic

typing, garbage collection and scripting―have been
explicitly focused on reducing the developing time,
increase readability of code and make easier the life of the
programmer. In addition, many features of pure functional
languages (Haskell, Lisp) have been reintroduced to
mainstream developments.

Python―upon ruby, C# and other “new”
languages―has achieved the highest degree of
transversality; providing rich GUI's, web frameworks,
database management and hardware management on any
platform. This success has been achieved thanks to its
easy integration with existing C++ resources (using SIP,
SWIG or Boost bindings), allowing python to fill the gap
between the user interface and the hardware oriented
worlds.

PyTango at Alba
Advantages of Python have been intensively applied in

the design, prototyping and simulation of the control
system of a new synchrotron [1]. The Alba Light
Source―being built in Barcelona, Spain―will start its
commissioning during 2010 with most of its control
applications based in PyTango; the python binding on top
of Tango Control System [2].

In the same way that one of the reasons of Tango
development was the necessity of a Control System that
matched completely within the Object-Oriented paradigm,
PyTango now offers a chance to apply new computing
paradigms and extend Tango in the field of soft and
functional programming.

PyTango allowed to dynamically add new code to
existing devices, loading new functions, classes and

modules during startup (Multiple Inheritance); adding
new variables and channels to a running device
(Dynamic Attributes) or modifying its state-machine
behaviour (Dynamic States and Qualities). This report
describes some of the applications of such techniques in
the Alba control system. Methods and classes described
can be obtained from PyTango_utils package, available
at Tango-DS repository in sourceforge.

MULTIPLE INHERITANCE
The standard approach to integrate multiple devices in

Tango is the multi-class Device Server, in which several
Tango Device Classes are embedded in a single
executable to perform together a single class.

Figure 1: A multi-class Device Server[3].

In some applications this approach presented some
redundancies as configuration may be duplicated in the
database (each device become a separated entity) and it's
needed a messaging system between the devices to
coordinate their tasks―using the standard Tango Client
layer or an integrated messaging framework[4].

To reduce these redundancies we added an alternative
interface-based approach, assuming that classes being
merged are simply adding their functionalities.

Figure 2: The Tango Interface approach, only one of the
communication interfaces will be instantiated.

Class merging is done at runtime―using the built-in
type class―, as Python allows “online” modification of
class objects and its inheritance before instantiating the
Tango Devices. If desired, the new class may receive the

THP079 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

824

name of the original parent (CCD in the example) to
replace it .

Application of multiple inheritance between Tango
Classes allows, using abstract classes, to fix common
behaviours and create customized versions of existing
classes.

DYNAMIC ATTRIBUTE CREATION
 The C++ and Java Tango Device Classes (software

object used to control a hardware device) already allowed
to create and remove attributes when needed [5]. In that
way data acquisition/extraction devices are able to
generate as many channels as needed by each specific
application or hardware resource.

Dynamic attribute creation in C++ device servers is
restricted to generating new copies of a template attribute
with fixed read/write methods. During the process of Alba
control system design and prototyping it was foreseen that
further customization would be needed to adapt dynamic
attributes to devices with an heterogeneus set of channels
(digital i/o, analog i/o, serial ports, ). This has been
achieved for any device inheriting from new DynamicDS
class.

Configuring DynamicAttributes
Declaration of dynamic attributes for PyTango Device

classes can be done in several ways, either through an
external command to the device or by specifying it in the
Device Properties to be created at Startup.

Table 1: Tags used in Dynamic Attributes

Tag Value

t Seconds since device startup

READ True for read access

WRITE True for write access

VALUE Value passed by client

[AttributeName] Last value of attribute

ATTR(name) Force attribute update

PROPERTY(name) Value of property

EVAL(PROPERTY(name)) Evaluation of property

STATE([value]) Read or set State

STATUS([value]) Read or set Status

XATTR(device/attr) Read other device attribute

VAR(name,[value]) Read or store a variable

The format for declaring the Dynamic Attributes is to
parse a Python expression using the eval method of the
Python interpreter. The scope of variables available for
the evaluation of an attribute includes all the desired
device commands and/or attributes and a set of tags that
allow to access the device configuration and state. New
commands are introduced modifying a locals dictionary
within the device object.

Table 2: Attribute Declaration

DynamicAttributes
ATT=Comm1 if READ else Comm2(VALUE))

Using Tango Types
Not all Tango Types are available yet, just Scalar and

Spectrum Tango types can be generated. Although type
can be automatically parsed it's sometimes needed to use
a conversion function; convenient methods have been
added for common Tango types.
Table 3: List of Tango Types and Conversion Functions

Tango Types Python

DevShort(x) int(x)

DevLong(x) int(x)

DevFloat(x) float(x)

DevDouble(x) float(x)

DevString(x) str(x)

DevVarShortArray(x) map(int,x)

DevVarLongArray(x) map(int,x)

DevVarFloatArray(x) map(float,x)

DevVarDoubleArray(x) map(float,x)

DevVarStringArray(x) map(str,x)

DYNAMIC QUALITIES AND STATES
Once the generation of readable values became

customizable, it was needed to integrate their values
within the State Machine, modifying the State/Status of
the Tango device or the quality/allowance of certain
attributes.

These customizations are always loaded at start-up
using DynamicStates and DynamicQualities properties. In
both cases the tags available are the same than those used
for DynamicAttributes.

Standard Tango Device Servers provide a hook method
that allows to perform State update before any attribute
reading or command execution. DynamicDS hook method
will evaluate DynamicStates declarations and will set the
State to the first State that evaluated to True.

DynamicQualities for each attribute are evaluated at
reading time, using previously generated values and tags
to assign a value between VALID, INVALID,
WARNING, ALARM or CHANGING.

Proceedings of ICALEPCS2009, Kobe, Japan THP079

Software Technology Evolution

825

Table 4: State/Qualities Declaration, using an Attribute
that Atores its Modification Time when it's Written. State
Changes if Value is above 10.0; Quality Changes for 10
Seconds after Writing (t is the Number of Seconds after
start up)

DynamicAttributes
Att_X=VAR('x') if READ or (VAR('x',
VALUE) and VAR('t0',t))

DynamicStates
ALARM=(Att_X > 10.0)
ON=1

DynamicQualities
Att_X=VAR('t0')+10>t and CHANGING
or VALID

EXISTING APPLICATIONS

PLC Device Servers
Alba EPS is an heterogeneus collections of PLC

subsytems that, although sharing the same communication
protocols, requires the generation of a big number of
variables that vary too much.

An automatic way of generating the attributes to be
read for each PLC is needed, and PyTango is the perfect
tool as it allowed to create Tango Attribute declarations
using the information retrieved from our cabling and
connections MySQL database [6][7].

All the commands needed for accessing Modbus
variables (Read/WriteRegisters) and PLC variable type
(DigitalInput/Output, Valves) were implemented and
became available to generate new attributes when needed.

PySignalSimulator
This Python Device Server allowed to produce any kind

of signal needed for simulation or GUI testing by adding
common mathematical signals to the scope of the
evaluation (rampt(t), sin(t), cos(t), exp(t), triangle(t),
square(t,duty), random()).

PyStateComposer
Adding two new tags to attributes evaluation,

DEVICES and STATES, this Tango device helped to
summarize not only the state of the different Tango
subsystems (loading a pre-defined list of devices), also
some key attributes if necessary.

Table 5:Composed Pressure and State

DynamicAttributes
AllPressures=[XATTR(dev+'/Pressure' for
dev in DEVICES]

DynamicStates
ALARM=ALARM in STATES
ON=1

PyAlarm
This device server extended the approach used for

DynamicStates to evaluate sets of conditions for different
alarms. It have been used intensively during machine
installation for its versatility to change alarm conditions
when needed.

CONCLUSSIONS
The high adaptability of dynamically programmed

objects made easier the task of prototyping and simulate
entire subsystems of the accelerator. This fact allowed to
start commissioning with many of the key applications
already tested and also helped to detect the flaws of the
system at early stages.

Dynamic attributes and other dynamic solutions may be
not adequated for stable systems, but it has been clear that
during the design and pre-commissioning of an
accelerator―while many things are continuously
changing―became a valuable tool.

In addition, the simplification of single and multi-class
inheritance in python device servers allowed to apply
Abstract Device Patterns [8] to PyTango device servers, a
fact that should increase class reusing in the future.

Collaboration
This work would have not been possible if not highly

influentiated by the work, ideas and suggestions of
Roberto Ranz, Alejandro Homs, Sergi Blanch, Guifré
Cuní, Carlos Pascual, Fulvio Becheri, Lothar Krause,
Nicolas Leclercq and David Fernández.

REFERENCES
[1] D.Fernández et al. “Alba, a Tango based Control System

in Python”, ICALEPCS 2009, Kobe, Japan.
[2] A.Götz, E.Taurel, J.L.Pons, P.Verdier, J.M.Chaize,

J.Meyer, F.Poncet, G.Heunen, E.Götz, A.Buteau,
N.Leclercq, M.Ounsy, “TANGO a CORBA based Control
System”, Proceedings of ICALEPCS 2003, Gyeongju,
Korea

[3] S. Rubio “Abstract Classes for Data Acquisition”, 2006,
Tango Meeting, ESRF, Grenoble, France

[4] N. Leclercq “Writing a SubSystem Device Server
Manager using YAT”, 2009, Tango Meeting, ESRF,
Grenoble

[5] R.Sune, E.Taurel and S.Rubio, “Adding Dynamic
Attributes to a C++ Device Server”, available at
www.tango-controls.org

[6] D.Beltran et al. “Alba Control & Cabling Database”,
ICALEPCS 2009, Kobe, Japan.

[7] D.Fernández et al. “Alba, The PLC based protection
systems”, ICALEPCS 2009, Kobe, Japan.

[8] A.Götz, “Abstract Device Pattern and Tango”,
ICALEPCS 2007.

THP079 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

826

