
LESSONS LEARNED ENHANCING EPICS CA FOR LANSCE TIMED AND
FLAVORED DATA*

J. Hill, LANL, Los Alamos, NM 87544, U.S.A.

Abstract
A previous paper [1] described an upgrade to EPICS

enabling client side tools at LANSCE to receive
subscription updates filtered selectively to match a logical
configuration of LANSCE beam gates, as configured by
the control room. The upgrade required fundamental
changes in the EPICS core components. First, the event
queue in the EPICS server was upgraded to buffer record
(function block) and device specific parameters accessed
generically via software interfaces for introspection of 3rd
party data. In contrast, event queues in previous versions
of EPICS were strictly limited to buffering only value,
timestamp, and alarm status tuples. Second, the Channel
Access server is being upgraded to filter subscription
updates. In this follow on paper some necessary design
changes mid-project and the lessons learned during the
software development will be described.

LANSCE
The Los Alamos Meson Physics Facility (LAMPF) was

originally designed to be a versatile machine for medium-
energy (800 MeV) nuclear physics experiments. It had
three injectors and could simultaneously accelerate
positive hydrogen ions (H+), negative hydrogen ions (H-)
and polarized negative hydrogen ions (P-). These three
beams could all have different intensities, duty factors,
and even different energies - depending on experimental
needs. Today LANSCE can simultaneously generate four
H- beam types and two H+ beam types. It services several
experimental facilities including a proton storage ring, a
low-intensity neutron research facility, proton
radiography, ultra-cold neutron source, isotope
production, and a proposed materials test station.

Developed during the infancy of computer control
systems, the architecture of the original LAMPF /
LANSCE control system (LCS) has elements of data
acquisition along with elements of traditional computer
control system architectures. It employs a locally
designed centralized hardware IO system called RICE
(Remote Instrumentation and Control Equipment). One of
the more interesting and useful features of RICE is its
ability to do "Timed" and "Flavoured" reads.

A "Timed Read" refers to sampling the signal at any
point within the 8.2 millisecond machine cycle. The time
to sample is normally specified relative to the start,
middle, or end of a particular beam gate, with the default
being the start of the cycle.

A "Flavoured Read" refers to the ability to schedule the
read for a particular machine cycle containing a desired
configuration of beam-gates. A “Flavour” is configured

by specifying for each of 96 timing system beam gates
whether it must be present, must be absent, or is not
relevant. Therefore, there can be up to 3ଽ଺ possible flavor
combinations, but in practice only roughly a dozen
“Flavours” are regularly used. These represent various
(meaningful) combinations of the six beam destination
beam-gates along with a handful of diagnostic-trigger-
gates, but more esoteric flavours for diagnostic and
experimental purposes are considered to be essential.

EPICS CONTROL SYSTEM
An EPICS Input Output Controller (IOC) is configured

with Database Records implementing function blocks for
various purposes including logical IO, numerical
calculation, and ordered sequencing. The EPICS Channel
Access (CA) internet communication subsystem is based
on a publish-and-subscribe communication model where
clients subscribe for updates, servers publish updates to
subscribed clients, and records post state change events to
servers. A channel is a virtual communication link
between a client application program and a process
variable (PV) exported by a service. EPICS clients issue
asynchronous read, write, and subscribe requests to the
process variable in the service. Clients are notified when
the connectivity of a channel changes.

One of the most essential requirements underlying the
original EPICS design was that regular periodic
processing of EPICS Records should not be disturbed by
influences from outside of an IOC. This guarantees that
time periodic algorithms such as PID loops are properly
maintained, and that there will be proper time
deterministic response by EPICS Records to state changes
detected in the sensors. This design recognizes that the
load induced by Record processing is measurable when
the IOC starts up, and remains fixed thereafter. In
contrast, the externally induced load on the CA server by
its clients is less predictable. It is therefore necessary for
EPICS Record processing to execute at relatively higher
priorities and for the CA Server to execute at relatively
lower priorities. An event queue containing subscription
updates communicates between the two entities.

UPGRADE REQUIREMENTS
At LANSCE we would like to upgrade the RICE based

hardware components, of the control system with modern
superset capability hardware. To interface the new
hardware with EPICS we must consider how to preserve
capabilities to view data in the control room selectively
based on timing and flavouring parameters. Tuning
operation work flows are typically experimental in nature
where there are too many beam flavouring and timing
permutations for all of the necessary flavours to be

 __

Work supported by US Department of Energy under contract
DE-AC52-06NA25396.

Proceedings of ICALEPCS2009, Kobe, Japan THP083

Software Technology Evolution

835

preconfigured as records in the EPICS Input Output
Controller (IOC) a-priori. Therefore, it is necessary to
upgrade EPICS at the Channel Access (CA) protocol
level so that logical configurations of beam gates, and the
necessary timing parameters, can be specified when a
client subscribes for process variable (PV) updates.

An EPICS IOC must also be upgraded to allow site
specific companion data to be specified when posting
subscription updates. For LANSCE purposes the site
specific companion data will be the set of beam gates
present when the data were captured.

Furthermore, it is necessary to add new array indexing
metadata to EPICS. When connecting with a PV the client
must learn the magnitude of the zero-eth element, the
magnitude of a one element increment and the units for
these magnitudes. Time delay units will be typical.

All of the above changes must be accomplished without
impacting the original guarantee; periodic processing of
EPICS Records will be immune to external influences.

BASIC DESIGN
The software upgrade for the event queue has closely

followed a design described in the previous paper [1]. In
summary, it was necessary to upgrade the IOC’s event
queues to carry device and record specific payloads. Each
event queue entry contains one smart pointer [2] linking
to a call back method, a C++ member function, to be
invoked when the event is processed, and one smart
pointer linking to the device or record specific payload.
The core software components in the system remain
generic because device payloads are queried through a
data introspecting interface we call Data Access [3].

Efficient memory management for these payloads is
best delegated to EPICS record and device specific 3rd
party modules that produce them. Therefore, reference-
counting smart pointers are necessary so that when the
last reference to a payload is consumed from the event
queue proper cleanup can be efficiently delegated to the
device and record specific code of the producer.

DESIGN CHANGES
Early in the design it was clear that the payload

producing record and device specific codes must operate
in different mutual exclusion locking domains from the
event consumer. Therefore, a record and device specific
lock may need to be taken before interrogating the data
using the Data Access interface, and before invoking the
call back methods which will process the event. What
wasn’t clear was the proper approach to manage this
complexity in generic code. Initial efforts were similar to
Figure 1 below – where a Guard object acquires the
mutual exclusion lock in its constructor, and releases it in
its destructor. Passing a reference to the Guard guarantees
that the target object is protected.

Figure 1: Initial mutual exclusion enforcement.

The downfall of the approach in Figure 1 is inability for
the generic code to know which mutual exclusion locking
primitive should be used to protect code in 3rd party
modules. To eliminate this issue, and also unsightly
clutter in the public callable interfaces, the project has
transitioned to the approach in Figure 2. With this
approach the C++ operator-> is overloaded to return
an upgraded type of guarded smart pointer object
acquiring the mutual exclusion lock in its constructor and
releasing it in its destructor. The approach in Figure 2 is a
substantially better design because, we will see later,
mutual exclusion locking and reference counting are
delegated to the record and device specific 3rd party
codes.

Figure 2: Subsequent mutual exclusion enforcement.

Smart Pointer Choices
A wide range of custom smart pointer implementations

are in use within the C++ community, but there are also
some carefully crafted versions available in open-source
libraries. In particular, the boost [4] library
shared_ptr, and the loki [5] policy-based smart
pointer are close matches to requirements. After some
deliberation the boost shared_ptr wasn’t adopted
because of lack of automated mutual exclusion for each
pointer invocation. The ultimate efficiency and flexibility
of the policy-based smart pointer in the Loki library was
also not adopted because it is taxing the limits of C++
compiler standard compliance. Unfortunately, one of the
primary limiting factors being portability to the aged gcc
2.x cross compiler still used for building legacy
embedded targets at several sites.

In the end, after careful research an in-house smart
pointer design which exactly fits our needs was chosen.
This has increased our code size by about 500 lines. There
were some basic requirements; the implementations of
mutual exclusion and reference counting must be runtime
polymorphic. Therefore, the implementation of these
features is delegated to the producer of the smart pointer
target, the consumer of these smart pointer targets shall
not be dependent on which implementation was chosen
for a particular target, and the choice can be made after
the base components are compiled. Furthermore, the
choice of an efficient intrusive (in target object), or less
efficient but architecturally decoupled non-intrusive
implementation is also enforced to be runtime
polymorphic. The design has also determined that
(unlocked) smart pointers shall consume the same space
as ordinary pointers, and therefore each (unlocked) smart
pointer contains a reference to the abstract handle
interface seen in Figure 3.

Figure 3: Smart pointer target handle.

class HandleIntf {
 virtual TargetMutexPair targetMutexPair () = 0;
 virtual HandleIntf & clone () = 0;
 virtual void release () throw () = 0;
};

Ptr < Service > pService = createService ();
Ptr < Channel > pChannel = pService->createChannel (…);

Mutex mutex;
Guard guard (mutex);
Service & service = createService (guard);
Channel & channel = Service.createChannel (guard,…);

THP083 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

836

To assist with efficient implementation of reference
counting, new Symmetric Multiprocessing (SMP) safe
atomic increment and decrement operators have been
added to the EPICS base distribution. Implementations
have been stubbed out currently for Windows, Solaris,
and vxWorks operating systems. Also, any code built
with version 4.1 or higher of the GNU gcc compiler is
supported using built-in atomic intrinsic functions. A
typical spinlock based mutual exclusion primitive takes
about three times longer when compared to the atomic
increment / decrement operations in straight line tests.

LESSONS LEARNED
As this manuscript is being prepared many parts of the

project are complete but there is still some work left to be
done. About 40 undefined symbols remain, and it’s clear
that the project has required more time than originally
anticipated. It is also not possible to provide performance
numbers in this paper as originally predicted. Perhaps
some underlying causes can be identified.

A year ago, I was willingly assigned to another project
[6] for which I was a principal software developer. My
role in this project rapidly expanded until it consumed all
available time for more than a year, and later this summer
I spent about a month and a half preparing a bug fix
release of EPICS – release R3.14.11. These projects
delayed my progress due to context switching, and loss of
momentum. From my perspective both of these issues are
frequently behind loss of productivity with software
development projects. Returning to this project has
brought a positive opportunity to review my work
objectively and to re-examine core design choices. That
has led to the improved design described previously, but
has also introduced additional delays.

For additional causes I have to look closer at my work
processes. At the start of the project the scope was set for
an incremental upgrade, but in the end the library was
completely rewritten. This will certainly make the code
simpler, better organized, and easier to maintain in the
future but this has introduced some delays. A rewrite is
certainly time consuming and expensive, perhaps even
justifiable in the end due to increased reliability and lower
maintenance costs, but the cost in terms of loss of
momentum in the EPICS community is more difficult to
rationalize. In retrospect breaking large projects into
smaller components is a good idea because more authors
can be involved, feedback from the user community can
be more rapidly obtained, and upgrades can occur
predictably.

I must also admit that the combination of object
oriented and multithreaded development has taken the
author some time to master. Each can be readily
understood on-their-own but the combination of two has
caused some considerable time spent on a learning curve
with multiple twisting paths. Changing the public
interface locking model midstream in the project has had
some considerable impact on the rest of the code.

Finally, the impacts of Symmetric Multiprocessing
(SMP) memory barriers, which cause CPU stalls but not

consumption, on throughput haven’t been determined.
That lesson can only learned upon project completion.

BENEFITS FOR LANSCE
We will soon have LANSCE style dynamic, on-the-fly

and ad-hoc, beam flavoring and beam timing specifying
experiments in the control room, but now with a
homogeneous EPICS-based and modern-hardware-based,
system. At LASNCE we can transition to a tool-based
approach to high level applications. This implies that high
level applications will interact with an abstract model of
the hardware which will facilitate incremental upgrades.
Use of the well-defined EPICS network communication
model can make on-call fault isolation much easier.

BENEFITS FOR THE EPICS
COMMUNITY

With the new system we will place flexible device and
record 3rd party module specific snapshots on the IOCs
event queue. Parameters other than alarm status, time
stamp, and scalar value will be correlated in time together
as a single event. Array updates will also now be buffered
on the event queue. The subscription filtering feature of
the upgrade, being implemented generically, should
provide equal benefit for all EPICS sites while being
minimally invasive for legacy client side tools. In the new
system we will have array index metadata – a major
omission in the original EPICS specification. Finally, we
will have an increasing intersection of EPICS capabilities
and the needs of data acquisition systems.

CONCLUSION
The project is nearing completion, some initial design

decisions needed revision, and I can identify some areas
in which to revise my work flow on future projects.
Nevertheless, after some delays, I hope that the EPICS
community will find that the new features are useful.

REFERENCES
[1] J. Hill, “EPICS CA Enhancements for LANSCE

Timed and Flavored Data,” ICALEPCS’07,
Knoxville, Oct 2007, WPPA24, p. 365, (2007).

[2] Herb Sutter, “The New C++:Smart(er) Pointers,”
“http://www.ddj.com/cpp/184403837/.

[3] J. Hill, “Next Generation EPICS Interface to Abstract
Data,” ICALEPCS’01, San Jose, 27-30 Nov 2001.

[4] http://www.boost.org/.
[5] A. Alexandrescu, Modern C++ Design (Addison-

Wesley, 2001).
[6] Martin Pieck, Jeff O. Hill, John F. Powers “System

Integration effort on MagViz a Liquid Explosive
Detection Device,” This conference.

Proceedings of ICALEPCS2009, Kobe, Japan THP083

Software Technology Evolution

837

