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Abstract 
A previous paper [1] described an upgrade to EPICS 

enabling client side tools at LANSCE to receive 
subscription updates filtered selectively to match a logical 
configuration of LANSCE beam gates, as configured by 
the control room. The upgrade required fundamental 
changes in the EPICS core components. First, the event 
queue in the EPICS server was upgraded to buffer record 
(function block) and device specific parameters accessed 
generically via software interfaces for introspection of 3rd 
party data. In contrast, event queues in previous versions 
of EPICS were strictly limited to buffering only value, 
timestamp, and alarm status tuples. Second, the Channel 
Access server is being upgraded to filter subscription 
updates. In this follow on paper some necessary design 
changes mid-project and the lessons learned during the 
software development will be described. 

LANSCE 
The Los Alamos Meson Physics Facility (LAMPF) was 

originally designed to be a versatile machine for medium-
energy (800 MeV) nuclear physics experiments. It had 
three injectors and could simultaneously accelerate 
positive hydrogen ions (H+), negative hydrogen ions (H-) 
and polarized negative hydrogen ions (P-). These three 
beams could all have different intensities, duty factors, 
and even different energies - depending on experimental 
needs. Today LANSCE can simultaneously generate four 
H- beam types and two H+ beam types. It services several 
experimental facilities including a proton storage ring, a 
low-intensity neutron research facility, proton 
radiography, ultra-cold neutron source, isotope 
production, and a proposed materials test station. 

Developed during the infancy of computer control 
systems, the architecture of the original LAMPF / 
LANSCE control system (LCS) has elements of data 
acquisition along with elements of traditional computer 
control system architectures. It employs a locally 
designed centralized hardware IO system called RICE 
(Remote Instrumentation and Control Equipment). One of 
the more interesting and useful features of RICE is its 
ability to do "Timed" and "Flavoured" reads. 

A "Timed Read" refers to sampling the signal at any 
point within the 8.2 millisecond machine cycle. The time 
to sample is normally specified relative to the start, 
middle, or end of a particular beam gate, with the default 
being the start of the cycle.  

A "Flavoured Read" refers to the ability to schedule the 
read for a particular machine cycle containing a desired 
configuration of beam-gates.  A “Flavour” is configured 

by specifying for each of 96 timing system beam gates 
whether it must be present, must be absent, or is not 
relevant. Therefore, there can be up to 3ଽ଺ possible flavor 
combinations, but in practice only roughly a dozen 
“Flavours” are regularly used. These represent various 
(meaningful) combinations of the six beam destination 
beam-gates along with a handful of diagnostic-trigger-
gates, but more esoteric flavours for diagnostic and 
experimental purposes are considered to be essential.  

EPICS CONTROL SYSTEM 
An EPICS Input Output Controller (IOC) is configured 

with Database Records implementing function blocks for 
various purposes including logical IO, numerical 
calculation, and ordered sequencing. The EPICS Channel 
Access (CA) internet communication subsystem is based 
on a publish-and-subscribe communication model where 
clients subscribe for updates, servers publish updates to 
subscribed clients, and records post state change events to 
servers. A channel is a virtual communication link 
between a client application program and a process 
variable (PV) exported by a service. EPICS clients issue 
asynchronous read, write, and subscribe requests to the 
process variable in the service. Clients are notified when 
the connectivity of a channel changes. 

One of the most essential requirements underlying the 
original EPICS design was that regular periodic 
processing of EPICS Records should not be disturbed by 
influences from outside of an IOC. This guarantees that 
time periodic algorithms such as PID loops are properly 
maintained, and that there will be proper time 
deterministic response by EPICS Records to state changes 
detected in the sensors. This design recognizes that the 
load induced by Record processing is measurable when 
the IOC starts up, and remains fixed thereafter. In 
contrast, the externally induced load on the CA server by 
its clients is less predictable. It is therefore necessary for 
EPICS Record processing to execute at relatively higher 
priorities and for the CA Server to execute at relatively 
lower priorities. An event queue containing subscription 
updates communicates between the two entities. 

UPGRADE REQUIREMENTS 
At LANSCE we would like to upgrade the RICE based 

hardware components, of the control system with modern 
superset capability hardware. To interface the new 
hardware with EPICS we must consider how to preserve 
capabilities to view data in the control room selectively 
based on timing and flavouring parameters. Tuning 
operation work flows are typically experimental in nature 
where there are too many beam flavouring and timing 
permutations for all of the necessary flavours to be 
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preconfigured as records in the EPICS Input Output 
Controller (IOC) a-priori. Therefore, it is necessary to 
upgrade EPICS at the Channel Access (CA) protocol 
level so that logical configurations of beam gates, and the 
necessary timing parameters, can be specified when a 
client subscribes for process variable (PV) updates. 

An EPICS IOC must also be upgraded to allow site 
specific companion data to be specified when posting 
subscription updates. For LANSCE purposes the site 
specific companion data will be the set of beam gates 
present when the data were captured. 

Furthermore, it is necessary to add new array indexing 
metadata to EPICS. When connecting with a PV the client 
must learn the magnitude of the zero-eth element, the 
magnitude of a one element increment and the units for 
these magnitudes. Time delay units will be typical. 

All of the above changes must be accomplished without 
impacting the original guarantee; periodic processing of 
EPICS Records will be immune to external influences. 

BASIC DESIGN 
The software upgrade for the event queue has closely 

followed a design described in the previous paper [1]. In 
summary, it was necessary to upgrade the IOC’s event 
queues to carry device and record specific payloads. Each 
event queue entry contains one smart pointer [2] linking 
to a call back method, a C++ member function, to be 
invoked when the event is processed, and one smart 
pointer linking to the device or record specific payload. 
The core software components in the system remain 
generic because device payloads are queried through a 
data introspecting interface we call Data Access [3]. 

Efficient memory management for these payloads is 
best delegated to EPICS record and device specific 3rd 
party modules that produce them. Therefore, reference-
counting smart pointers are necessary so that when the 
last reference to a payload is consumed from the event 
queue proper cleanup can be efficiently delegated to the 
device and record specific code of the producer.  

DESIGN CHANGES 
Early in the design it was clear that the payload 

producing record and device specific codes must operate 
in different mutual exclusion locking domains from the 
event consumer. Therefore, a record and device specific 
lock may need to be taken before interrogating the data 
using the Data Access interface, and before invoking the 
call back methods which will process the event. What 
wasn’t clear was the proper approach to manage this 
complexity in generic code. Initial efforts were similar to 
Figure 1 below – where a Guard object acquires the 
mutual exclusion lock in its constructor, and releases it in 
its destructor. Passing a reference to the Guard guarantees 
that the target object is protected. 

 
Figure 1: Initial mutual exclusion enforcement. 

The downfall of the approach in Figure 1 is inability for 
the generic code to know which mutual exclusion locking 
primitive should be used to protect code in 3rd party 
modules. To eliminate this issue, and also unsightly 
clutter in the public callable interfaces, the project has 
transitioned to the approach in Figure 2. With this 
approach the C++ operator-> is overloaded to return 
an upgraded type of guarded smart pointer object 
acquiring the mutual exclusion lock in its constructor and 
releasing it in its destructor. The approach in Figure 2 is a 
substantially better design because, we will see later, 
mutual exclusion locking and reference counting are 
delegated to the record and device specific 3rd party 
codes. 

 
Figure 2: Subsequent mutual exclusion enforcement. 

Smart Pointer Choices 
A wide range of custom smart pointer implementations 

are in use within the C++ community, but there are also 
some carefully crafted versions available in open-source 
libraries. In particular, the boost [4] library 
shared_ptr, and the loki [5] policy-based smart 
pointer are close matches to requirements. After some 
deliberation the boost shared_ptr wasn’t adopted 
because of lack of automated mutual exclusion for each 
pointer invocation. The ultimate efficiency and flexibility 
of the policy-based smart pointer in the Loki library was 
also not adopted because it is taxing the limits of C++ 
compiler standard compliance.  Unfortunately, one of the 
primary limiting factors being portability to the aged gcc 
2.x cross compiler still used for building legacy 
embedded targets at several sites. 

In the end, after careful research an in-house smart 
pointer design which exactly fits our needs was chosen. 
This has increased our code size by about 500 lines. There 
were some basic requirements; the implementations of 
mutual exclusion and reference counting must be runtime 
polymorphic. Therefore, the implementation of these 
features is delegated to the producer of the smart pointer 
target, the consumer of these smart pointer targets shall 
not be dependent on which implementation was chosen 
for a particular target, and the choice can be made after 
the base components are compiled. Furthermore, the 
choice of an efficient intrusive (in target object), or less 
efficient but architecturally decoupled non-intrusive 
implementation is also enforced to be runtime 
polymorphic. The design has also determined that 
(unlocked) smart pointers shall consume the same space 
as ordinary pointers, and therefore each (unlocked) smart 
pointer contains a reference to the abstract handle 
interface seen in Figure 3.  

 
Figure 3: Smart pointer target handle. 

class HandleIntf { 
    virtual TargetMutexPair targetMutexPair () = 0; 
    virtual HandleIntf & clone () = 0; 
    virtual void release () throw () = 0; 
};

Ptr < Service > pService = createService (); 
Ptr < Channel > pChannel = pService->createChannel (…);

Mutex mutex; 
Guard guard (mutex ); 
Service & service = createService (guard); 
Channel & channel = Service.createChannel (guard,…);
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To assist with efficient implementation of reference 
counting, new Symmetric Multiprocessing (SMP) safe 
atomic increment and decrement operators have been 
added to the EPICS base distribution. Implementations 
have been stubbed out currently for Windows, Solaris, 
and vxWorks operating systems. Also, any code built 
with version 4.1 or higher of the GNU gcc compiler is 
supported using built-in atomic intrinsic functions. A 
typical spinlock based mutual exclusion primitive takes 
about three times longer when compared to the atomic 
increment / decrement operations in straight line tests.  

LESSONS LEARNED 
As this manuscript is being prepared many parts of the 

project are complete but there is still some work left to be 
done. About 40 undefined symbols remain, and it’s clear 
that the project has required more time than originally 
anticipated. It is also not possible to provide performance 
numbers in this paper as originally predicted. Perhaps 
some underlying causes can be identified.  

A year ago, I was willingly assigned to another project 
[6] for which I was a principal software developer. My 
role in this project rapidly expanded until it consumed all 
available time for more than a year, and later this summer 
I spent about a month and a half preparing a bug fix 
release of EPICS – release R3.14.11. These projects 
delayed my progress due to context switching, and loss of 
momentum. From my perspective both of these issues are 
frequently behind loss of productivity with software 
development projects. Returning to this project has 
brought a positive opportunity to review my work 
objectively and to re-examine core design choices. That 
has led to the improved design described previously, but 
has also introduced additional delays.  

For additional causes I have to look closer at my work 
processes. At the start of the project the scope was set for 
an incremental upgrade, but in the end the library was 
completely rewritten. This will certainly make the code 
simpler, better organized, and easier to maintain in the 
future but this has introduced some delays. A rewrite is 
certainly time consuming and expensive, perhaps even 
justifiable in the end due to increased reliability and lower 
maintenance costs, but the cost in terms of loss of 
momentum in the EPICS community is more difficult to 
rationalize. In retrospect breaking large projects into 
smaller components is a good idea because more authors 
can be involved, feedback from the user community can 
be more rapidly obtained, and upgrades can occur 
predictably. 

I must also admit that the combination of object 
oriented and multithreaded development has taken the 
author some time to master. Each can be readily 
understood on-their-own but the combination of two has 
caused some considerable time spent on a learning curve 
with multiple twisting paths. Changing the public 
interface locking model midstream in the project has had 
some considerable impact on the rest of the code.  

Finally, the impacts of Symmetric Multiprocessing 
(SMP) memory barriers, which cause CPU stalls but not 

consumption, on throughput haven’t been determined. 
That lesson can only learned upon project completion. 

BENEFITS FOR LANSCE 
We will soon have LANSCE style dynamic, on-the-fly 

and ad-hoc, beam flavoring and beam timing specifying 
experiments in the control room, but now with a 
homogeneous EPICS-based and modern-hardware-based, 
system. At LASNCE we can transition to a tool-based 
approach to high level applications. This implies that high 
level applications will interact with an abstract model of 
the hardware which will facilitate incremental upgrades. 
Use of the well-defined EPICS network communication 
model can make on-call fault isolation much easier. 

BENEFITS FOR THE EPICS 
COMMUNITY 

With the new system we will place flexible device and 
record 3rd party module specific snapshots on the IOCs 
event queue. Parameters other than alarm status, time 
stamp, and scalar value will be correlated in time together 
as a single event. Array updates will also now be buffered 
on the event queue. The subscription filtering feature of 
the upgrade, being implemented generically, should 
provide equal benefit for all EPICS sites while being 
minimally invasive for legacy client side tools. In the new 
system we will have array index metadata – a major 
omission in the original EPICS specification. Finally, we 
will have an increasing intersection of EPICS capabilities 
and the needs of data acquisition systems. 

CONCLUSION 
The project is nearing completion, some initial design 

decisions needed revision, and I can identify some areas 
in which to revise my work flow on future projects. 
Nevertheless, after some delays, I hope that the EPICS 
community will find that the new features are useful. 
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