

AN INTEGRATION TESTING FACILITY FOR THE CERN
ACCELERATOR CONTROLS SYSTEM

N. Stapley, M. Arruat, J.C. Bau, S. Deghaye, C. Dehavay, W. Sliwinski, M. Sobczak,
CERN, Geneva, Switzerland

Abstract

A major effort has been invested in the design,
development, and deployment of the LHC Control
System. This large control system is made up of a set of
core components and dependencies, which although
tested individually, are often not able to be tested together
on a system capable of representing the complete control
system environment, including hardware. Furthermore
this control system is being adapted and applied to
CERN's whole accelerator complex, and in particular for
the forthcoming renovation of the PS accelerators. To
ensure quality is maintained as the system evolves, and to
improve defect prevention, the Controls Group launched a
project to provide a dedicated facility for continuous,
automated, integration testing of its core components to
incorporate into its production process. We describe the
project, initial lessons from its application, status, and
future directions.

PROJECT BACKGROUND

Focus on Reuse and Standards
At CERN, over the last few years, the focus of controls

software has been shifting from many individual software
projects towards providing a more generic singular
control system capable of working with all CERN’s
accelerators. This can be seen with controls projects like
LHC Software Architecture (LSA)[1] which was
originally to provide the software only for LHC being
adapted to provide the controls software for other
accelerators like SPS. Furthermore, there has also been an
increased re-use of software across projects. For example,
LSA components are used in Injector Control
Architecture (InCA)[2], a software project which is part
of the PS complex renovation, and ancillary projects
supplying common service components across all major
projects. These components must interact with software
devices, running on the FECs (Front End Computers
normally running in VME crates), which control the
equipment. Devices are provided by equipment specialists
using the now common Front-End Software Architecture
Framework (FESA)[3]. For controls hardware, although
there is an effort to consolidate on a limited set of FECs
and communication protocols, different generations and
types will always co-exist. Expanding the notion of
components to general sense – hardware, re-usable units
of software, libraries, drivers and operating systems –
there are often not only multiple versions running
concurrently in operation, but also multiple combinations

leading to a complex fusion of components deployed in
operation at any moment in time.

The Case for Testing
Testing presents a challenge for any project – how to

deliver new features and bug-fixes into an increasingly
intertwined set of operational components without any
detrimental impact on operations. At best this problem
can cause delays and increase the necessary effort for
both the evolution of the control system, and for the
project’s development speed. For large software projects
this is a known and well documented point [4], often
made with the fact that doubling requirements squares
complexity. It implies that an adequate and realistic
quality assurance regime is in place to ensure components
are validated together as part of the operational control
system prior to deployment. Within this testing is a
critical success factor.

Typically there is a perceived fear of slowing down
progress by the addition of “extra” procedures. In reality
has been shown in all cases that “quality is free”[5] –
more than paid for by increased reliability of products and
services. These lead to a reduction in the effort spent on
problem resolution, time dedicated to operational support,
and fixing costly mistakes. In essence the focus of an
engineer’s energy is shifted to where it is best placed –
progressing with new work and in a more sustained
manner, rather than heroically debugging “completed”
work. In fact, quality levels in organisations can be
crudely judged by the amount of corrective effort that is
spent on work, which of course is a waste [6].

So considering the above, the Controls Group launched
the System Testbed Facility (CSTF) project to automate
integration and system testing. Its purpose is primarily to
validate the control system components, both hardware
and software, as a single cohesive product that can be
certified together. It is an important step of defect
prevention, as is unit testing. Projects do, and are
expected to, test their components individually first
before being integrated and tested as part of the control
system.

Testbed Components
The Controls System Test Facility aims to represent the

operational environment as best it can. The topology of
the CERN Control system can be described roughly as a
3-tier architecture (see Figure 1). The lowest tier is made
up of many FECs exposing devices for control. These
have an operating system, hardware drivers and libraries.

THP085 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

838

The middle-tier is a set of centralized servers running
software to provide services to all tiers. And finally
consoles for software concerned with display and user
interaction.

To mimic this, the CSTF contains an instance of every

type of FEC and middle-tier server running their current
operational operating system, libraries and drivers. The
timing system is also included with the ability to simulate
cycles from different accelerators. Each of the FECs has a
FESA test device installed which is designed to help
exercise the control system. The scope of the CSTF is
limited to testing the main “technology stack”, so there is
no equipment attached to its FECs, and currently no
consoles. What is tested are the core software
components, communication protocols and libraries on
the current hardware platforms upon which top level
operator applications and accelerator equipment rely on
for controls.

Figure 2: Overview report generated by Bamboo.

Running tests
The tests are run by a web-based Continuous

Integration Server (Bamboo from Atlassian[7]). Bamboo
provides an environment for automated build and test
execution – it schedules the tests, based on a policy, such
as time periods or external triggers, runs them and
provides reports. It can show which tests were successful,
statistics like time taken, and the history of any particular
test including logs or an overall summary. This system
was chosen since it integrates well with other tools and in
use for continuous integration and testing of Controls
Java applications. Figure 2 provides an idea of an
overview screen.

The tests are implemented as Java JUnit tests contained
in a CO software project where the dependencies on other
components and their versions can be specified, and a list
of the test devices is supplied to test against thus
exercising the whole controls stack from the top.

INITIAL LESSONS AND STATUS
In the summer an initial version of the CSTF was put in

place, based on the specification tests from the InCA
project and the FESA test device.

Identifying Components
The original concept was to run the tests when any core

component or its dependencies changed. However this
proved to be more difficult than originally foreseen since
not all parts of the control system are identifiably
versioned. For instance some components are controlled
by external vendors, and even internally although care is
taken to ensure source code is versioned, many final
artifacts (e.g. executable binaries) are not. Consequently
as the initial operation of the SCTF could not detect
updates of all components, it was decided to run the rests
continuously instead. A further point to address is that
without the ability to identify all the artifacts tested there
is no way to produce a certified component set.

Continuous Testing
Although the repeated testing was automatic, at first

sight it was considered pointless. After all, the intention
was only to repeat the tests when a known change was
introduced into the control system. After a few weeks,
however, an intermittent error in the control system was
exposed. As it turned out testing the same code repeatedly
so often allowed this to be seen once or twice a week, and
it probably would not have been exposed with a single
test run after any update. Although the error was found to
be a differing interpretation of specifications between two
interacting components – a type of defect that integration
testing and the CSTF is designed to find – it proved that
test on change was not the better strategy.

FECs

 MIDDLE-TIER SERVICES

CONSOLES CONSOLES CONSOLES CONSOLES

DB

FECs FECs FECs FECs

Figure 1: General topology of control system.

Proceedings of ICALEPCS2009, Kobe, Japan THP085

Software Technology Evolution

839

The Actual Tests
The CSTF runs primarily with specification tests

provided by the InCA project. These are a good starting
point because they contain the expectations of InCA as a
client of the other controls system components, but they
are not a complete testing suite. There is much scope to
improve the current test set but it requires a certain level
of resources. The danger being that if the test set does not
evolve with the control system, it will lose its relevance
lowering the value of the CSTF. One discovery was that it
is actually quite hard to write good tests! There is no
overall single control system specification to develop a
set of conformance tests from, instead specifications are
the responsibility of the individual projects and therefore
focused on their own requirements. However, there are
plenty of other sources such as the organisational history
of issues from meeting minutes, operator’s logbooks, and
the defect tracking system for failures reported by
operations which can be analyzed as well as how
operators complete acceptance testing for updated
systems and the test code that projects write. Developing
Integration tests also requires a mindset independent from
any particular project being worked on by the developer;
and of course tests need to be tested too!

As stated before, the test set is implemented as JUnit
tests which is very convenient for code tests, but less so
for overall system testing. Other (mainly commercial)
tools exist which develop tests from specifications and
data supplied by users.

Software Releases
At the moment, in the controls software release system,

components are released individually, and are then
available to be deployed. Until more recently this worked
well as projects tended to be less dependent on each other
and historically the control system was more a set of
disparate applications. The CSTF currently tests newly
released components with the current operational set.
Now with trend towards increased component inter-
dependencies, the CSTF would be more useful executing
tests earlier in the development activity stream; for two
main reasons. The first is that integration testing takes
place when a component is released (but not necessarily
deployed), and hence any defect found requires a return to
the older version with the hope that it was not
accidentally deployed in the mean time. The second is
that, on some occasions, component updates have an
impact on dependent components or clients (e.g. no
backwards compatibility). A transactional multi-
component approach to releasing would now be more
appropriate. The CSTF is a tool, and as such can be
placed anywhere in the software development process.
Aiming to place it earlier, before release, would help
prevent defects from being released at all where there is a
lower associated cost for fixing them (typically 60 times
lower[8]). This implies that components are to be

available for testing before release in conjunction with its
dependents.

FUTURE DIRECTIONS
In the previous section, the experience from the initial

operation of the CSTF discovered potential improvements
which can be broken into 3 simple aspects. That is “the
right tests applied to the right components at the right
time”. Many of these improvements are beyond the
mandate of the CSTF project, and consequently have been
taken up as group-wide concerns. The CSTF experience
has also highlighted differences in the way projects
approach software development. Rather than leave the
CSTF project to overcome or work around these, the
Controls group has preferred to try to standardise these
instead. Consequently, there is an initiative to help
identify all components at all levels in a common way,
and the outcome of this will lead to the ability to certify a
complete set of components together. Another initiative is
investigating coordinating releases of components
together and providing release candidates. The CSTF will
then test all release candidates together as an atomic set
and they can then be released together.

The tests are perhaps the most difficult part, as good
tests are the key to the CSTF success. A view sometimes
expressed is that only operational testing “will discover
all the bugs”. The CSTF is only part of the overall testing
chain and does not expect to find more than 70% of
testable defects. It is not a replacement for unit or
acceptance testing – the point is it can be used to achieve
a significantly higher reliability factor, reducing defects in
operation; and this is its eventual measure of success – a
more reliable control system.

REFERENCES
[1] G. Kruk et al., “LHC Software Architecture [LSA] –

Evolution toward LHC Beam Commissioning”,
ICALEPCS’07, Knoxville, USA, Oct 2007, RPPA03,
p. 526 (2007).

[2] S. Deghaye et al., “CERN Proton Synchrotron
Complex High-Level Controls Renovation”,
ICALEPCS’09, Kobe, Japan.

[3] M. Arruat et al., “Front-End Software Architecture”,
ICALEPCS’07, Knoxville, USA, October 2007,
WOPA04, p. 310 (2007).

[4] S. McConnell, “Code Complete, A Practical
Handbook of Software Construction”, Microsoft
Press 2004, “How size affects construction”, C27.

[5] P. Crosby, “Quality is still free: Making Quality
Certain in Uncertain Times”, McGraw-Hill 1996.

[6] M. Poppendieck, “Implementing Lean Software
Development”, Addison-Wesley 2006, C4.

[7] http://www.atlassian.com/software/bamboo
[8] R. Pressman, “Software Engineering; A

Practitioner’s Approach”, McGraw-Hill 2004, “Cost
Impact of Software Defects”, S8.4.1.

THP085 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

840

