
DEVELOPMENT OF A NEW JAVA CHANNEL ACCESS LIBRARY JCAL

Hiroyuki Sako#, Japan Atomic Energy Agency, Tokai, Japan
Hiroshi Ikeda, Visible Information Center Inc., Tokai, Japan

Abstract
Java channel access library JCA (Java Channel Access

library) has been widely used for device control
applications in Java. Especially for high-level applications
in the J-PARC linac and RCS (Rapid-Cycling
Synchrotron) control systems, which are unified in Java,
the pure version of JCA implementation (CAJ) is
desirable. However, JCA and CAJ have instability
problems and vulnerability of the codes. To overcome the
issues, a new compact Java channel access library, JCAL
(Java Channel Access Light library) has been developed.
A special care is taken to design the code architecture in
order to keep thread safety and code robustness. The main
part of the library is designed to work in a single thread,
with the other threads for the monitor and call-back
functions of Channel Access. By adopting such a simple
design, robustness and stability is realized. An adapter
library for JCA API, JCA-JCAL, has been also
implemented for convenience to plug in JCAL to existing
Java applications with JCA or CAJ. Bench mark tests
have been carried out and compared to JCA, which show
comparable performance.

INTRODUCTION
JCA (Java Channel Access library) is a channel access

library for Java applications developed by Cosylab [1].
The library consists of API (Application Program
Interface), and its implementations. There are pure Java
implementation, CAJ, and JNI implementation, JCA-JNI.
The latter is more stable and has been widely used in
EPICS control systems such as J-PARC and SNS.

The JCA library, especially the pure Java
implementation CAJ (Channel Access in Java) [2] is
desirable for the J-PARC linac and RCS control system
whose presentation layer is based on Java. However, JCA
has vulnerability in implementations as described below.

Thread-Safety Violation
It is hard to predict what kinds of problems happen if a

multi-threaded application violates thread-safety, since
the effect spreads all over the codes. Thread-safety
violation can be found easily if the application contains
apparent insufficient or inconsistent synchronizations, or
well-known anti-patterns such as invoking the wait
method without a condition loop, calling anonymous
methods with holding locks. Actually, some of them
appear in the API of JCA and JNI and CAJ
implementations. However, generally it is hard to find
broken thread safety and repair it perfectly, since a thread
can access many parts of the application, all of which
must be followed by an investigator must follow.

Vulnerable Internal Structures
Broken encapsulation is a fundamental defect from the

object-oriented programming point of view, for instance,
returning mutable fields without defensive copy, escaping
the reference this directly/indirectly in the constructor,
which appear in the API of JCA and JNI and CAJ
implementations.

Strong dependencies among different parts of codes
make it hard to maintain and improve the library.
Especially, interdependencies among packages must be
avoided.

JCA API Specific Problems
The API contains too concrete implementations, which

is not necessary for users. It should be more abstract to
reduce its conceptual weight, in other words, to reduce
amount of users' knowledge of the codes. To be worse,
since an implementation part of some API classes there
have defects, their derived classes are forced to inherit the
defects.

For example, the abstract class DBR defined in the API
represents a fundamental data structure. It is defined as an
abstract class instead of interface, and implementations of
some functions make DBR neither immutable nor thread-
safe. Thus DBR is hard to handle in the context of multi-
thread. Also, its implementation details expose its internal
field, which is a fundamental defect in object-oriented
programming. Moreover, there are too many subclasses of
DBR included in the API, due to “combinatorial
explosion” in combinations of base types and attribute
types. Also some subclasses are forced to implement an
interface which is useless for the library users, due to
implementation details. Since these subclasses all inherit
the properties of DBR, they are neither immutable nor
thread-safe, and expose their internal information. Even
though these defects exist, implementations of API are
forced to use DBR and its subclasses, and require extra
efforts to handle them in the multi-threaded context. Even
worse, these defects will never be repaired in future
releases, to keep the backward compatibility.

The API also includes a non-standard naming style
which confuses Java developers.

There are magic numbers hardwired in the API which
are used to construct and parse network packets. This
means that the implementation details are included in API
and exposed, which reduce flexibility and extensibility of
the API.

The class QueuedEventDispatcher, implementing the
interface EventDispatcher, includes the following anti-
patterns and defects. It starts a thread in the constructor,
which exposes an incomplete instance. A daemon
attribute of the dispatch thread is set, which might stop a ___

#hiroyuki.sako@j-parc.jp

THP089 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

844

critical process, for instance, writing data to a file. It
invokes "wait" method without a condition loop. Its
synchronization policy of listeners to fire is vague.

CAJ Specific Problems
Using finalizers is almost anti-pattern, because it is not

clear whether and when VM executes the finalizer.
Moreover, implementing finalizer deteriorates the
performance.

Since validity check for data received via network is
insufficient, the application using the library crashes
when it has received some invalid packets.

It is ambiguous which methods are thread-safe in
Channel, because its implemented class has too many
responsibilities with insufficient synchronizations, and it
includes the anti-pattern of escaping the reference this
from its constructor.

There is no document for the synchronization policy
which variables are needed to guard by which locks.

The Leader/Followers pattern is adopted in CAJ which
uses a thread pool to handle received tasks to reduce
overhead of passing the tasks from one thread to another.
On the other hand, this pattern complicates the codes,
which might break thread-safe. It is in general difficult to
use a multithreaded system effectively in the client-side
applications, because there are control flows to request
tasks from the user-level to the network-level, opposite to
control flows to handle responses as events from the
network-level to the user-level. It also makes the library
hard to use if callbacks of the events are invoked by
several threads. Therefore it is doubtful whether using this
pattern in CAJ is necessary.

Figure 1: JCAL architecture.

IMPLEMENTATION
To overcome the above problems of JCA, we designed

and constructed a new Java channel access library, JCAL
(Java Channel Access Light library) [3].

Fig. 1 shows the schematic view of JCAL core
structure. JCAL works in a single thread, which is called
the internal thread. Only Context, Channel, and Monitor
in API and Manager are cross-accessed from other
threads (outer threads) and implemented thread safe.

Table 1 describes each class in Fig. 1. Channel and
Client are different views of the same entity, where
Client is defined as an inner class of Channel.
There is a similar relation between Monitor and
Subscription. ClientManager holds instances of
Client and Subscription, RepeaterTransport,
BroadcastTransport and ClientTransport represent
abstract communications using TCP or UDP sockets.
RepeaterTransport listens for beacons from servers, by
registering a Repeater. Repeater is an independent
application that allows clients and servers in a host to
share a UDP port. JCAL does not include Repeater.
BroadcastTransport sends broadcast packets and
receives packets to search for channels. ClientTransport
exchanges data with a server for channels and monitors,
which dynamically bundles channels and monitors into a
single TCP connection (which is called Virtual Circuit) if
they are connected to the same server in a same priority.
This complex procedure for ClientTransport comes is
requires by the channel access protocol.

Manager holds not only references to the data used by
the internal thread, but also the main logic of the internal
thread and implementations of the Transport classes.

We have also developed a convenient adaptor library
for JCA-API with JCAL, JCA-JCAL. By just setting
“jp.go.jaea.jcal.jca.JcalContext" to
JCALibrary.createContext method instead of values for
JCA-JNI and JCA-CAJ, an application uses JCALJ.
Parameters of JCA-JCAL can be set in
"JCALibrary.properties" configuration file that is for JCA.

Table 1: Classes in JCAL
Class Functions
Context Library environment
Channel EPICS channel (API)
Monitor EPICS monitor (API)
Manager Manager to control the internal thread
ClientManager Manager for Client and Subscription
Client Inner class of Channel, accessed only

by the internal thread
Subscription Inner class of Monitor, accessed only

by the internal thread
RepeaterTransport Communication with Repeater (UDP)
BroadcastTransport Communication in broadcast (UDP)
ClientTransport Communication with server (TCP/IP)

Benchmark Tests
To examine the performance of JCAL, we have carried

out benchmark tests compared with JCA-JNI, JCA-CAJ,
and JCA-JCAL. For JCA and CAJ, we used JCA-2.3.2,
and CAJ-1.1.5b. The number of channels is varied from 4
to 4000. We have iterated the same test 10 times and took
average time except for the first iteration, to exclude time
for loading classes. To measure the speed accurately, we
waited 10 seconds before each test to avoid influence of a
previous test, and we called garbage collections before
each test, so that it is not executed during the test.

<<thread safe>>

C ontext
<<thread safe>>

M anager

<<thread safe>>

C hannel
C lient

<<thread safe>>

M onitor
S ubscription

C lientT ransport

B roadcastT ransport

*

*
*

C lientM anager

R epeaterT ransport

*

*

c
re
at
e

c
re
at
e

*

internal thread
outer threads

Proceedings of ICALEPCS2009, Kobe, Japan THP089

Software Technology Evolution

845

We have performed tests in two environments; a
software IOC (Input Output Controller) and IOCs for
beam monitors in the J-PARC control system. Fig. 2
shows the duration of the "connection" test as a function
of the number of channels for the software IOC. The
order of durations (from shortest to longest) is JCAL,
JCA-JNI (single-threaded), JCA-JCAL, JCA (multi-
threaded), and CAJ.

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500

number of channels

d
u
ra

ti
o
n
 (

m
s)

JCAL(async)

JCA-JCAL(sync)

CAJ(sync)

JCA-Single(sync)

JCA-Multi(sync)

JCA-JCAL(async)

CAJ(async)

JCA-Single(async)

JCA-Multi(async)

Figure 2: A benchmark test for "connection" in the
software IOC.

Fig. 3 shows the duration of the "get" test as a function

of the number of channels for the software IOC. The
order of durations (from shortest to longest) is CAJ, JNI
(single-threaded), JCAL, JCA-JCAL and JCA-JNI (multi-
threaded).

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000 4500

number of channels

d
u
ra

ti
o
n
 (

m
s)

JCAL(async)

JCA-JCAL(sync)

CAJ(sync)

JCA-Single(sync)

JCA-Multi(sync)

JCA-JCAL(async)

CAJ(async)

JCA-Single(async)

JCA-Multi(async)

Figure 3: A benchmark test for "get" for the software IOC.

Fig. 4 shows the duration of the "put" test as a function

of the number of channels for the software IOC. The
order of durations (from shortest to longest) is JCA-JCAL,
JCAL, CAJ, JCA-JNI (single-threaded) and JCA-JNI
(multi-threaded).

Tables 2 and 3 show summary of duration time per
channel with the software IOC and beam monitor IOCs,
respectively. It takes much longer time with beam monitor
IOCs than with the software IOC. JCAL is comparable
with JCA-JNI (single-threaded) and JCA-CAJ. JCA-JNI
is the fastest. JCAL is faster than CAJ in connection tests

but slightly slower in get and put tests. JCA-JCAL is
slower than JCAL, as expected due to overhead by using
JCA-API. Multi-threaded JCA-JNI is very slow.

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

number of channels

d
u
ra

ti
o
n
 (

m
s)

JCAL(async)

JCA-JCAL(sync)

CAJ(sync)

JCA-Single(sync)

JCA-Multi(sync)

JCA-JCAL(async)

CAJ(async)

JCA-Single(async)

JCA-Multi(async)

Figure 4: A benchmark test for "put" for the software IOC.

Table 2: Duration per Channel (msec) of Benchmark Tests
with Software IOC.
Test JCAL JCA-

JCAL
CAJ JNI

(single)
JNI
(multi)

connect 0.037 0.051 0.099 0.035 0.072
Get 0.011 0.012 0.0061 0.0074 0.074
Put 0.038 0.022 0.029 0.044 0.048

Table 3: Duration per Channel (msec) of Benchmark Tests
with Beam Monitor IOCs.
Test JCAL JCA-

JCAL
CAJ JNI

(single)
JNI
(multi)

connect 0.31 0.34 1.01 0.59 0.63
Get 0.040 0.071 0.026 0.031 0.101
Put 0.16 0.37 0.15 0.15 0.18

SUMMARY
A new pure Java channel access library JCAL has been

developed for high-level Java application in J-PARC linac
and RCS control system. The design and implementation
of JCAL is thread safe and stable. Bench mark tests show
comparable performance with JCA-JNI and JCA-CAJ
implementations.

REFERENCES
[1] http://jca.cosylab.com/
[2] http://caj.cosylab.com/
[3] H. Ikeda, H. Sako, “Development of a New Channel

Access Library”, WP091, PASJ 2008,
Higashihiroshima, Japan.

THP089 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

846

