
ADVANCED MONITOR/SUBSCRIPTION MECHANISMS FOR EPICS*

Ralph Lange, Helmholtz-Zentrum Berlin / BESSY II, 12489 Berlin, Germany
Andrew Johnson, Argonne National Laboratory, Argonne, IL 60439, USA
Leo Dalesio, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract
Publish/subscribe systems need to handle the possibility

that there are subscribers requiring notification at an
update rate much lower than the publisher's natural
frequency, or synchronized to external events. Feedback
or pulse-to-pulse diagnostics are processed at rates in the
100Hz or even multi kHz range, while many subscribers
will not be able to process the data at this rate: e.g.
archiving, visualization, and processing clients each
require specific, different update rates. Sending more
updates than required wastes processor and network
bandwidth. A subscriber should be able to specify rate
limiting factors or filters that are instantiated and
guaranteed by the publisher. Many accelerators, especially
pulsed machines, are using a hardware event system to
distribute fiducials and events from a central event and/or
frequency generator. These events should be integrated
into the publish/subscribe system to support posting event
synchronous updates to subscribers that require
synchronized data. This paper investigates several
approaches to provide these functionalities in the EPICS
architecture.

MOTIVATION
With front end computers becoming more and more

powerful, data processing rates have been consistently
increasing over the years. Today, modern diagnostics and
feedback related systems are processing data at rates up to
the multi kHz range. On accelerators, especially pulsed
machines, many of these fast systems are connected to
site-wide event and timing systems, which provide
accurate synchronous nanosecond resolution time stamps,
and distribute fiducials as well as synchronized events.

Variable Update Rates
Some clients of this front end data will require every

update and need to subscribe at the full rate, e.g.
distributed feedback loops, or turn-by-turn diagnostics
clients. Other clients, e.g. archiving and visualization
tools, will have completely different requirements and are
only interested in low or medium update frequencies. Any
fixed update rate will not need the various clients'
requirements.

Event Related Updates
If an event distribution system is used, a number of

clients will be interested in subscribing to event-correlated
updates, to obtain coherent synchronized data sets from

more than one front end computer at the time of a certain
event.

CURRENT LIMITATIONS
The EPICS (Experimental Physics and Industrial

Control System) toolkit [1] facilitates Channel Access
(CA) as its IP based network protocol [2], using a
publish/subscribe mechanism for data updates to clients.
There are a few limitations in this area, though, that need
to be addressed.

Fixed Update Rates
Mechanisms implemented in the EPICS real-time

distributed database determine the rate of data updates to
clients. Clients can specify the types of events they are
interested in as a combination of “regular data update”,
“archive data update”, and “alarm status/severity change”.
All EPICS records will send updates for all their fields on
alarm status/severity change. Most records can be
configured to send data and archive updates on value
change, or whenever the record is processed. For
numerical values, two separate configurable dead bands
are supported, one for regular data, one for archive data
updates. All these configurations are done at the EPICS
record level – Channel Access clients cannot specify per
subscription update rates or update rate limits.

Currently, as a workaround at the application level,
additional alternative records with predetermined useful
processing rates may provide updates at a limited rate.

Limited Event Correlation
The existing EPICS event system drivers connect to the

EPICS time stamp mechanism and specialized EPICS
record types. E.g., if configured correctly, an event record
would be processed on receiving a specified hardware
event, and could start a chain of other records in the IOC
(Input Output Controller) database to be processed. The
event system drivers also allow all IOC time stamps being
supplied by the timing/event system hardware [3,4].

Other than for record processing and generation of time
stamps, there is no mechanism to filter data updates from
otherwise unrelated records on system state information
derived from receiving timing system hardware events.

DESIGN CONSIDERATIONS
A number of considerations have to be taken into

account when designing an extension to overcome these
limitations.

*Work supported by U.S. Department of Energy (under contracts
DE-AC02-06CH11357 resp. DE-AC02-98CH10886), German
Bundesministerium für Bildung und Forschung and Land Berlin.

Proceedings of ICALEPCS2009, Kobe, Japan THP090

Software Technology Evolution

847

CA Protocol Compatibility
The existing Channel Access protocol is widely used

within the large number of existing EPICS installations.
Previous developments have shown that extreme care has
to be taken: changes to the on-wire protocol should be
avoided if possible as they cause a noticeable increase in
code size and must be thoroughly tested for compatibility
with a wide range of EPICS versions.

Modularity
To facilitate running EPICS IOCs on small systems, any

extensions should be modular, and add only minimal
object code and run-time memory consumption when not
being used.

API Compatibility
Some internal APIs of the EPICS database are heavily

used by code outside the scope of EPICS Base, such as
locally added device drivers and record types. Such APIs
should be left unchanged if possible, to avoid breaking 3rd

party code.

EXISTING UPDATE MECHANISM
The existing mechanism for updates is shown in Fig. 1.

The example shows two Channel Access clients, one with
three subscriptions to different fields of a record, the other
with one subscription to a field of the same record.

Figure 1: Event update mechanism.

Network Connection
After channel discovery, Channel Access creates one

bidirectional TCP connection for each combination of
client application and server (IOC). All traffic between the
client and the IOC is routed through that connection.

Event Queues and Subscriptions
On the IOC, Channel Access creates an event queue

(ring buffer) for each client connection, to buffer data
updates whenever the database generates events faster
than the CA server is able to send to the client. For clients
with many subscriptions, additional event queues are
generated and linked to the first queue as needed.

One event task is started for every client, that reads
updates from the client's event queue(s), converts the data
to the Channel Access network format, puts it into a
network buffer, and sends the filled buffer through the
TCP connection to the client.

Every record instance keeps a linked list of event
subscription structures, one for each subscription to one
of its fields. The event subscription contains the field of
the record that is being subscribed to, additional
configuration flags for the subscription, as well as a
pointer to the event queue that updates should be put into.

Data Updates
The routine db_post_events(), which is being called

when setting a record's field or as part of record
processing for every changed field, iterates through the
event subscription list and writes data to the appropriate
event queue on a match.

Records will usually send updates by calling
db_post_events() on change, or whenever they are
processed. Numerical records keep two separate
configurable dead bands to limit the update rate, as
described above. All records send updates on alarm
severity or status changes.

SERVER-SIDE PLUG-INS
Most of the described shortcomings can be resolved by

introducing a layer of client-configurable per-subscription
plug-ins on the server side.

Mechanism
Additional processing of updates, e.g. event filtering

and synchronization, is done in plug-in modules, that can
be inserted between the event subscription structures and
the event queues when the connection is made. These
plug-ins have APIs both for receiving and generating
event data, so they can be stacked. Fig. 1 shows the
location of the proposed plug-in layer in the existing
update scheme.

Instantiation and Configuration
A recent addition to EPICS is the ability for clients to

add modifiers to channel names, that are transparently
forwarded to the IOC [5]. A JSON (JavaScript Object
Notation) parser has been added to the IOC, allowing
channel modifiers that use JSON notation to specify
arbitrary structures.

The object code for plug-ins is loaded on the IOC. All
plug-ins register themselves at boot time, providing a
name tag and a set of callbacks for the JSON parser.
When the client request for a subscription is processed,

THP090 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

848

the IOC parses the client-supplied modifiers for the
channel. Upon finding a plug-in tag, it creates and
connects an instance of the plug-in and lets the plug-in
parse its configuration by forwarding all configuration
data callbacks.

This design allows extension of the IOC functionality
by adding plug-ins without any change to EPICS Base or
recompiling the IOC software. It may even be possible to
add plug-ins to a running IOC, as long as the necessary
registrations are done.

POSSIBILITIES
Server-side plug-ins can be used for a variety of per-

connection event processing, including, but not limited to:
● Update rate limiting: The client specifies a maximum

update rate for the subscription.
● Update correlation with timing systems: The client

specifies a timing system derived system state to
determine when updates should be sent.

● Event value filtering: E.g. sliding average of values.
● Server-side buffering of array data.

SUPPORT LIBRARIES

Event Correlator
To support plug-ins that correlate event updates with

system states provided by external systems, a library will
be provided to handle system state flags.

The external event system driver will be able to simply
set or reset a system state based on incoming hardware
events or as part of a timer callback. These actions will be
stored with their corresponding time stamps, so that an
event plug-in can query the correlator with the record
processing time stamp to determine if record processing
happened during a certain system state being true. This
check will work even if the state was true for only a short
period and update processing has been delayed.

Memory Allocator
As plug-ins are instantiated per subscription, they are

expected to cause a significant number of memory
allocations and deallocations for plug-in internal
structures of unknown size.

To avoid a performance hit and system memory
fragmentation, adding an universal allocator library
underneath of or in addition to the existing free list
allocators will be considered. After a first plug-in freed all
its structures, such an allocator should be able to reuse the
memory for instances of other plug-ins using structures of
a different size. Depending on the type of target system,
the allocator implementation could facilitate the widely
used SLAB [6,7], SLUB [8], or SLOB [9] algorithms.

STATUS
This project is in its design phase. It is part of a 1-year

effort to add features needed by the NSLS-II project to the
EPICS toolkit, and is expected to be finished within that
time. The required first set of plug-ins will include update

rate limitation and filtering based on external event driven
system states as described above.

CONCLUSION
The addition of server-side plug-ins to the EPICS

toolkit adds valuable functionality to the EPICS IOC. It
will help to overcome limitations of the existing design,
and allow the future addition of new functionality without
creating a major impact on performance, memory
footprint, or complexity.

New features of EPICS facilitate run-time plug-ins with
arbitrary configuration supplied by the client application.

REFERENCES
[1] Experimental Physics and Industrial Control System,

http://www.aps.anl.gov/epics.
[2] J. Hill, R. Lange, “EPICS R3.14 Channel Access Reference

Manual”,
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.ht
ml.

[3] J. Winans, J. Kowalkowski, A. Johnson, “EPICS 3.14
Support for the APS Event System”,
http://www.aps.anl.gov/epics/modules/timing/apsEvent.

[4] B. Kalantari, “generalTime – EPICS R3.14 Support for
Clock Time”, http://epics.web.psi.ch/software/generalTime.

[5] A.N. Johnson, R. Lange, “Evolutionary Plans for EPICS
Version 3”, WEA003, this conference.

[6] J. Bonwick and Sun Microsystems, “The Slab Allocator: An
Object-Caching Kernel Memory Allocator”, USENIX
Summer 1994 Technical Conference, 1994, p. 87-98.

[7] B. Fitzgibbons, “The Linux Slab Allocator”, 2000.
[8] C. Lameter, “SLUB: The Unqueued Slab Allocator V6”,

2007, http://lwn.net/Articles/229096.
[9] M. Mackall, “SLOB: Introduce the SLOB Allocator”, 2005,

http://lwn.net/Articles/157944.

Proceedings of ICALEPCS2009, Kobe, Japan THP090

Software Technology Evolution

849

