
A MODULAR ENVIRONMENT FOR HIGH LEVEL APPLICATIONS
Guobao Shen, BNL, UPTON, NY 11973, U.S.A.

Abstract
For a modern large-scale accelerator complex such as

NSLS-II, a high level application environment is
indispensable and plays important role from beam
commissioning to daily operation during its whole life
time. There are many particular environments available
and those environments have been well developed and
been using at different facilities. Those existing
environments usually are closed environments, provide
their own application toolset, and talk with their build-in
simulation engines. Their applications tie together
functions through internal data or file structure, and that
makes it difficult to share applications or algorithms
between each other. To solve that problem, a modular
environment for high level applications is proposed at
NSLS-II and under development. The purpose of this new
environment is to modularize the application, and build
up a client-server based environment. This paper
describes recent progress of our modular environment,
particularly our development for model based control, and
IRMIS database based applications.

INTRODUCTION
A dedicated computer software environment for

accelerator beam control and manipulation, accelerator
status control and analysis, which is usually known as a
HLA (High Level Application), plays more and more
important roles during machine study, commissioning,
and daily operation. Conventional HLA environments
usually are closed environments, provide whole set of
application tools, and have their build-in simulation
engine. Those environments have been used in many
facilities and demonstrated that a unique environment is
very efficient for the beam commissioning, operation, and
maintenance during its whole life time. However, those
environments tie together functions through internal data
or file structure to provide a self-consist environment.
None of them include any portions of the others. That
makes it difficult to share applications or algorithms
between each other. If desired application or algorithm
does not exist in a selected environment, users have to
develop their own even it is available in another
environment. Eventually, each environment provides
similar functionality with each other, and many duplicate
applications and algorithms have been developed.

A novel architecture based on client-server for HLA is
proposed at NSLS-II (National Synchrotron Light Source
II) to address that problem. It tries to modularize each
application, and makes all applications pluggable. One
application provides one unique function, and is made as
a standalone module. They communicate with each other
through a unified communication protocol. For example,
for a model based control, the simulation engine is built
as a server. An application gets model parameters, twiss
parameters for example, from model server instead of

calling simulation code within itself. With this approach, a
HLA developer can dedicate on new development and
improvement, avoid duplicated development, and save the
man-power.

Since the NSLS-II control system [1] is determined to
adopt EPICS (Experimental Physics and Industrial
Control System) as its device control framework, the
development for our modular environment is designed
and developed against EPICS system.

The paper describes the recent progress about our
modular environment development. Section II gives an
overview of system architecture. In Section III, model
server and model based control are described. In Section
IV, IRMIS aware application and IRMIS server are
shown. Section V concludes the paper.

MODULAR ARCHITECTURE
Our effort is to develop a modular environment based

on client-server architecture. Detailed design can be found
in [2], and illustrated as Fig 1 briefly.

Figure 1: System architecture for a modular environment
for high level application.

As showed in Fig. 1, we have 5 application categories
that are explained as below:

1. Model server. A simulation engine runs in a model
server, and beam parameter such as beam optics is
provided by this server. Multiple simulation servers
are allowed in our architecture. A narrow and well
defined API [1] is developed at NSLS-II to provide
transparent access to different simulation engines.
At NSLS-II, we choose Tracy-3 [3] and Elegant [4]
for our development;

2. IRMIS (Integrated Relational Model of Installed
Systems) [5] database server. The IRMIS database
is designed for a general purpose for accelerator
complex. It can be used for documenting
accelerator hardware and its installation, cabling,
and system configuration. In this paper, we will
introduce using to manage lattice and its
revolution, and for model based control;

3. Application server. The application server is a
server family; each application server provides
dedicated functionalities such as archiving, EPICS

Proceedings of ICALEPCS2009, Kobe, Japan THP094

Software Technology Evolution

859

processing variable logging, alarm handler, and so
on. It can be a server that provides model based
control, optics matching for example, or a general
purpose server, providing numerical algorithm for
example;

4. Data server. The data server store all data from
measurement and simulation such as measured
beam orbit, measured response matrix, response
matrix from online model;

5. Application client. It could be either a thin client or
a thick client according requirement. The
presentation will be done in this layer, and most
important rule is to develop a GUI (Graphic User
Interface) to accelerator control, commissioning,
and operation.

Application is modularized into standalone server, and
each application is loose coupling with others, modular,
pluggable, and therefore reusable. All servers and clients
communicate with EPICS based low level device control
system through a unique communication protocol known
as channel access.

MODEL SERVER
An accelerator is usually designed with a methodology

so-called MBD (Model Based Design). There are 4 steps
to use MDB for an accelerator design:

1) Establishing a geometric sequence for accelerator;
2) Analyzing and synthesizing all controllers,

particularly magnets;
3) Simulating and optimizing design;
4) Integrating all these phases by deploying it.
With all above steps, various considerations have been

performed during the design, for example single particle
dynamics and realistic magnetic lattice, and a realistic
model can be established.

Bunches of computer simulation codes have been
developed for that purpose, and most are used widely to
study the beam behaviors and verify designer’s
consideration. Some challenges have been addressed in
the simulation codes such as how to combine the
numerical methods for modeling of a realistic lattice with
the analytical techniques for analysis.

It is nature to adopt a MBC (Model Based Control) to
re-use the realistic model and related algorithms
developed during the design phase to control and
manipulate a beam. The MBC method is important for an
accelerator beam study, commissioning, and operation. It
provides an efficient approach for establishing
communication between a realistic model and physical
machine. In terms of control requirements, a realistic
accelerator model contains information that enables
prediction of the beam properties, beam orbit for example,
of changing process operating conditions, magnetic
strength for example. Conventional solution to use MBC
is to build the simulation code into application through
some variety of data structures, files, or methods.
However, this approach replies on its build-in code and
none of them have capability to talk with other simulation
code.

At NSLS-II, a standalone server for MBC is under
development. A server for MBC is developed already
against current EPICS release (v3) as described in [2], but
some new requirements arise during the development.
Most important requirement is how to organize data
efficiently, change the data structure dynamically and
transfer data to client according client specified filters.
However those functionalities are lack of current EPICS
release. Our current model server cannot provide those
functions.

Fortunately, those functionalities will be addressed in
next major EPICS release (v4) [6]. A significant
improvement in EPICS v4 is a pvData (Process Variable
Data), which is a definition and implementation of
memory resident data. The pvData provides an efficient
way to store, access, and transfer memory resident data.
All memory resident data is organized as structured data
with a PVStructure container. The EPICS channel access
protocol is updating to transfer the structured data over
network.

IRMIS SERVER
IRMIS is a RDB (Relational DataBase) tools which

originally was developed at ANL (Argonne National
Laboratory) for documenting. It is a collaborative effort
now between several EPICS facilities including ANL, and
BNL. The IRMIS has the capability to capture all of the
system parameters needed to document the installation,
the process variables of control system, the lattice of
realistic model, and the revolution history.

Lattice Database
With IRMIS database, each lattice configuration for

realistic model can be captured and restored according
user requirement. A library has been prototyped to fetch
lattice information from a Tracy or Elegant deck, write
them into IRMIS lattice database, and extract a particular
lattice from IRMIS as shown in Fig. 2.

Figure 2: Schematic of using IRMIS to manage lattice.

Different simulation code has different definition for
accelerator element type. To simplify IRMIS lattice, we
define an IRMIS aware element type for different
accelerator components. The lattice deck to IRMIS object
mapping is finished in the library when writing into or
extracting from IRMIS lattice database. The library

THP094 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

860

communicates with IRMIS through IRMIS data service
layer [7].

IRMIS Server
The lattice database records bare lattice information,

including element geometric location, and designed
magnetic strength. Both location and strength are ideal
value, and we hope to combine them with engineering
error or alignment offset. It is required to use live
magnetic strength instead of design when producing a
realistic model.

The lattice information is stored in lattice database as
shown in Fig. 3. The engineering error and alignment
offset are stored in another IRMIS database, installation
database, and the live strength is saved in IRMIS Log
database. We are going to use two mapping tables to
associate the IRMIS lattice database with installation
database and with the log database. A library is under
development. Once we finish it, an IRMIS server will be
created which provides the capability to feed lattice into
model server directly from IRMIS database.

Figure 3: Schematic of extracting realistic lattice and
using IRMIS server to feed model server directly.

SUMMARY
A modular environment for high level application is

proposed at NSLS-II project. The goal for this
environment is to make application modular, distributed,
pluggable, and therefore reusable. The system consists of
model server for model based control, IRMIS server to
track various machine parameters and configuration, data
server for data store, and application server family. Some
detailed design and implementation is presented for the
model server and IRMIS server.

ACKNOWLEDGEMENT
The author would like to thank Johan Bengtsson for his

helpful discussions and comments on the model server
development. He wants to thank Donald Dohan and G.
Carcassi for their contribution on the IRMIS database and
IRMIS data service layer. He also wants to express this
thanks to Leo Bob Dalesio for his continuous support and
encouragement.

REFERENCES
[1] G. Carcassi, D.Dohan, et.al “NSLS II Control

System”, this proceeding, TUP104.
[2] G. Shen, “A software architecture for high level

applications”, Proceeding of PAC 2009, FR5REP004,
May 2009, Vancouver.

[3] J. Bengtsson, “TRACY-2 User’s Manual”, SLS
Internal Document, February 1997; M. Bo ge,
“Update on TRACY-2 Documentation”, SLS Internal
Note, SLS-TME-TA-1999-0002, June 1999.

[4] M. Borland, “elegant: A Flexible SDDS-Compliant
Code for Accelerator Simulation,” APS LS-287,
2000.

[5] IRMIS:http://www.aps.anl.gov/epics/irmis/index.php;
D. A. Dohan, L. R. Dalesio, G. Carcassi, “High
Availability On-Line Relational Databases for
Accelerator Control and Operation”, Proceedings of
PAC 09, May 2009, Vancouver.

[6] M. R. Kraimer, L. R. Dalesio, K. Zagar, M.
Sekoranja, “Evolution of the EPICS Channel Access
Protocol”, this proceeding, MOD005.

[7] G. Carcassi, “A REST Service For IRMIS3”, this
proceedings.

e

Proceedings of ICALEPCS2009, Kobe, Japan THP094

Software Technology Evolution

861

