
A RAPID APPLICATION DEVELOPMENT FRAMEWORK USED FOR LHC

HARDWARE COMMISSIONING TOOLS AND OTHER ACCELERATOR

RELATED APPLICATIONS

C. Charrondière, O. Andreassen, D. Kudryavtsev, M. Nybo, A. Raimondo, H. Reymond,
 A. Rijllart, M. Zerlauth, CERN, Geneva, Switzerland

 V. Shaipov, R. Sorokoletov, JINR, Dubna, Russia

Abstract
A set of tools were developed for the LHC Hardware

Commissioning team to analyse and validate the electrical

circuits, the powering systems and their associated

protection equipment. The choice was made to develop

these tools using the Rapid Application Development

Framework based on LabVIEW™, because it was the

most suited to fulfil the requirements of flexibility,

adaptability, quality, integration into the LHC accelerator

control software and light maintenance. This paper

describes the Rapid Application DEvelopment (RADE)

framework, the motivation behind its development, the

applications which use it focussing on the interfaces to

C++ and Java. It also reports on the experience during the

LHC Hardware Commissioning, together with two other

examples of the use of RADE for very different

applications: CLIC Two-Beam Test Stand viewer and the

LHC Multi-Alignment Control System.

INTRODUCTION

The two counter rotating proton beams of the LHC [1]

are guided by 1232 superconducting dipole magnets

operating at 1.9K and more than 8000 other

superconducting magnets. A current of 11850A flows in

the dipoles, to create the 8.33T magnetic field required to

bend the 7TeV beam around the 27km ring of the LHC.

Before starting operation, all the electrical circuits were

tested and validated during the Hardware Commissioning

[2].

A number of tools were developed to validate the

technical systems involved in the powering of the

superconducting magnets (interlocks, power converters,

quench detection, etc.); these tools gather the data,

perform calculations and check or assist the operator to

assess the correctness of the results. These tools are based

on LabVIEW™ and were implemented using the RADE

Framework. Because of its integration with the

accelerator control system, RADE could also be used to

develop other applications like the Two-Beam Test Stand

(TBTS) [4] viewer for the CLIC test facility, and the

Multiple-Alignment Control System (MACS) for the

alignment of the LHC collimators [5].

RADE ARCHITECTURE

The Rapid Application Development Environment is

targeting test and development applications. It was

designed to design and maintain, in a short time, rapidly

evolving applications, like those needed during studies

typical of CERN machine development runs. It can also

be used for expert diagnostics tools and test facilities.

RADE makes use of several communication layers as

shown in Figure 1, to adapt and interface to the systems

and the protocols used in the CERN accelerator control

environment.

Figure 1: Communication layers in RADE.

The development effort was concentrated in the

integration to the CERN accelerator control environment.

JAPC Interface

JAPC [6] is a communication layer to control

accelerator devices using Java. Client programs can

access JAPC parameters with set and get data, or can wait

to be notified of value changes using the subscription

mechanism. JAPC is a unified API for all the parameter

types present in the control system. The diversity of

devices is handled below the JAPC interface where each

type of device has its own implementation.

For our purpose we have implemented a LabVIEW™

to JAPC interface via a Tomcat server (Figure 1). The

same mechanism is used to access ORACLE databases.

CMW rapper
The Common MiddleWare (CMW) [7] is based on the

Remote Device Access (RDA) client package to access

accelerator Front End Computers (FESA FEC). All user

interactions with RDA are associated with dynamically

W

THP097 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

868

allocated data buffers. A “set” request requires the use of

a component that allocates a data buffer. One can then

sequentially insert data, then the data in the buffer is sent

and the buffer is released.

We implemented the LabVIEW™ to CMW interface in

the form of a wrapper to the library.

It consists of a component palette for LabVIEW™ and

some DLLs. The RDA C++ interface for Windows was

used to create the wrapper; however, all Windows-

specific code was encapsulated so that porting it to Linux

became straightforward. The communication layers are

shown in Figure 2.

Figure 2: Communication layers LabVIEW to CMW.

SDDS ibrary
SDDS [8] stands for Self Described Data Set. This file

format is commonly used at CERN and can contain any

data type. The header of the file describes its content.

The SDDS library in RADE was implemented in

standard LabVIEW™. It has functions to read the header

and to direct read access parts of the data. For the digital

signals only the state changes are output together with

their timestamps. The library can read both ASCII and

binary format.

PLC ibrary
The communication to the PLC is written in standard

LabVIEW™ using the “Fetch-Write” protocol from

Siemens™ via TCP-IP. The “Fetch-Write” has to be

declared in the PLC to authorise an external device to

access its data blocks. For more flexibility we are

developing a wrapper for LIBNODAVE [9], an open

source library to access Siemens™ PLCs.

RADE IN APPLICATIONS

RADE in Hardware Commissioning

During the Hardware Commissioning tests are carried-

out by specialist teams to qualify the electrical circuits

for operation. All the 1600 circuits are tested according to

a predefined sequence of test steps (interlocks, current

ramps, firing of heaters, opening of switches, etc.) and

the behaviour of the systems is verified to be as expected.

In this last phase, a set of applications are used to check

or assist the operator to assess the results of the test

procedure.

The Sequencer, written in Java, drives the equipment

through the test steps. A set of C++ programs gather and

store test data in SDDS files and in an ORACLE™

database. The Post-Mortem Analysis tool, developed on

RADE, performs the data analysis. The collected data is

presented in the Event Analyser (Figure 3); it carries-out

the analysis particular to each circuit type, by presenting

the data extracted from the SDDS files and from the

ORACLE™ database to the operator.

RADE allowed to rapidly create expert GUIs and

analyse data using graphical programming. All RADE

components were used during the implementation of the

Post Mortem analysis (Figure 4).

In the 2008 campaign, 11735 test steps were performed

involving Post Mortem; this peaked in August, 3234 test

steps were executed.

Figure 3: Post Mortem Event Analyser

RADE in Two-Beam Test Stand

The Two-Beam Test Stand (TBTS) in the CLIC

experimental hall (CLEX) aims at testing the two-beam

acceleration scheme for CLIC, the CERN Linear Collider.

Beam stability, beam loss issues and RF structures are

studied in this set-up.

All the signals are acquired through FESA devices,

which are easily accessible using the CMW wrapper or

the JAPC interface. Data from the Beam Position

Monitors (BPM) and RF signals is collected and

presented in many different views. The RADE framework

was used to implement the acquisition as a server task.

Each graphical user interface is a client taking only the

data it requires to display in the appropriate format, thus

avoiding data duplication.

L

L

.

Proceedings of ICALEPCS2009, Kobe, Japan THP097

Software Technology Evolution

869

Figure 4: Post Mortem system overview for ardware ommissioning.

RADE in the Multi-Alignment Control System

MACS is a remotely controlled survey system to verify

the alignment of the LHC collimators. The system is

based on stretched wire offset measurements combined

with digital photogrammetry; it will determine the

transversal position of the survey system with respect to

the surrounding reference magnets. Once this is known

the reversal of this process is used to determine the

position of the collimators with respect to the survey

system. The whole system has been installed on a train,

controlled by a Siemens™ PLC, attached to a monorail

and can be remote controlled by operators outside the

LHC tunnel (Figure 5).

Figure 5: Collimator survey wagon.

The MACS application was developed using RADE to

control the PLC and communicate with measurement

instruments such as: AICON™ camera, Wyler™

Zerotronic inclination sensors, Leica™ Disto, Aeroel™

XLS35 laser micrometer. The approach has saved

development time and provided a high quality GUI.

CONCULSION

The described applications show that RADE is efficient

and flexible with a good integration into the CERN

accelerator control infrastructure. RADE is a basis to be

extended to other interfaces and protocols, like DIP (Data

Interchange Protocol[10]), accelerator timing and alarms.

REFERENCES

[1] L. Evans, “The Large Hadron Collider – Present
Status and Prospects”, IEEE Trans. Appl.
Supercond., Vol. 10 No. 1 (2000), 44-48.

[2] R. Saban, “LHC Hardware Commissioning
Summary”, EPAC08, Genoa Italy.

[3] A. Raimondo, “Rapid Application Development
Environment Based on LabVIEW” -
https://edms.cern.ch/document/904425/1

[4] V. Ziemman, “The Two-Beam Test-Stand in CTF3”,
EPAC06, Edinburgh UK.

[5] O. Aberle, “Collimator integration and installation
example of one object to be installed in the LHC”,
EPAC08, Genoa, Italy.

[6] V. Baggiolini, “JAPC-the Java API for parameter
control”, ICALEPCS2005, Geneva, Switzerland.

[7] K. Kostro, “The control middleware (CMW) at
CERN status and usage”, ICALEPCS2003,
Gyeongju, Korea.

[8] R. Soliday, “New features in the SDDS tool kit”,
PAC2003, Portland, Oregon, US.

[9] LIBNODAVE, “Exchange data with Siemens PLCs”,
http://libnodave.sourceforge.net

[10] DIP description, http://ts-dep-lea-int.web.cern.ch/ts-
dep-lea-int/dataexchange-DIP.htm

h c

.

.

.

THP097 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

870

