
ECLIPSE RCP ON THE WAY TO THE WEB
M. Clausen, J. Hatje, DESY, Hamburg, Germany

J. Rathlev, University of Hamburg, Germany
K. Meyer, C1 WPS GmbH, Hamburg, Germany

Abstract
Web-based applications are becoming an increasingly

important part of the IT strategy for many organizations.
Eclipse supports the development of web applications
with its Rich Ajax Platform project and aims to further
improve this support in the next major version of Eclipse,
which is currently in development and planned for release
in summer 2010. Using these technologies, users can run
the same Eclipse application on different platforms. At
work for instance operators could use the desktop
environment to control the machine while at home they
configure the alarm system in a browser or cellular phone.
The applications for both platforms can be built from the
same source code. This paper will give an overview of the
Eclipse strategy to support applications on the web and its
impact on existing Eclipse RCP applications like Control
System Studio.

INTRODUCTION
For many users and developers, web applications are

becoming increasingly important. While traditional,
native applications have many advantages, the strength of
web applications is that they can be accessed from
anywhere, including from mobile devices, and are easier
to deploy because they do not require installation on the
client. Building web applications usually requires
developers to learn a different set of skills than those
required for the development of desktop applications
because web applications use different technologies than
desktop applications.

The Eclipse Rich Ajax Platform (RAP) is a framework
developed by the Eclipse Foundation which can be used
to develop web applications based on existing Eclipse
technologies. RAP application development is similar to
traditional Rich Client Platform (RCP) development, so
developers can reuse their existing RCP knowledge. The
promise of RAP is to enable the development of both web
and rich client applications from a single code base with a
high degree of code reuse.

Supporting the development of web applications is also
an important goal for the next major version of the
Eclipse platform, which is currently being developed in
the E4 project.

For this paper, we have surveyed the RAP project as
well as the E4 project. We describe how web applications
can be developed using RAP, point out the major
differences to traditional RCP development, and list the
current limitations of RAP. We also give a short overview

of the E4 project. Finally, we assess the impact of the
Eclipse web efforts on existing RCP applications by using
the Control System Studio as an example.

THE ECLIPSE RICH AJAX PLATFORM
The Eclipse Rich Ajax Platform (RAP) is an extension

for the Eclipse Rich Client Platform (RCP) for creating
plug-in-based, interactive web applications [1]. RAP
reuses existing Eclipse concepts and technologies, such as
the Standard Widget Toolkit (SWT) and JFace, as well as
plug-ins, extensions and extension points, OSGi services,
etc. The HTML and JavaScript parts of the web
application are provided by RAP, so developers are not
required to be familiar with those technologies.

Because developers who write RAP applications
continue to use the same frameworks as they would use
when writing a traditional RCP application, developing a
RAP application on the surface looks very similar to
developing an RCP application. However, there are still
some important differences that developers should be
aware of.

In this section, we describe the basic way in which RAP
works and the most important differences to RCP.

User Interface Architectures
Because RAP is based on the same APIs as RCP, the

architecture of a RAP application’s user interface is
structurally very similar to that of an RCP application.
Figure 1 compares the architectures of RCP and RAP. In
RCP, the user interface (SWT) is implemented based on
the operating system’s native UI widgets. RAP provides
its own implementation of the SWT API, which
implements user interface widgets based on web
technologies running in the browser.

However, while there are few structural differences,
there are major differences in behaviour. A traditional
RCP application is started once per user (that is, each user
runs his or her own instance). RAP applications, by
contrast, are multi-session applications: the application is
started only once on the server and can be accessed by
multiple users simultaneously. Therefore, applications
must be developed with multi-session support in order to
work with RAP.

Multiple Sessions
The multi-session nature of RAP applications has

several important consequences.

THP109 Proceedings of ICALEPCS2009, Kobe, Japan

Web Technology

886

Obviously, the application’s own application logic must
support multiple sessions. For example, an application
should not store user-specific state or session state in
Singletons or use other kinds of “global” state like static
variables. Singletons are instantiated only once per
application, not once per user session, so they are
necessarily shared across all users.

There are also some RCP features that behave
differently when used in a RAP application. Most
importantly, a RAP application has only one workspace
which is shared by all users. Therefore, users cannot use
the workspace to customize their application and all users
of a RAP application share the same preference settings.

It is also not possible to use Eclipse’s localization
features to run the application with different languages for
different users.

Communication and Performance
RAP uses the browser as a thin client which is

responsible only for rendering the user interface. All
application logic as well as handling of user interface
events happens on the server.

The communication between the user interface in the
web browser (client) and the application on the server is
based on HTTP. The client uses JavaScript to send an
asynchronous HTTP request to the application when the
user interacts with the application, a technique known as
Asynchronous JavaScript and XML (Ajax). This
communication is handled automatically by RAP.
Developers are not required to implement any
communication between the browser and the server
themselves.

Because all UI events are handled on the server, RAP
sends an HTTP request to the server every time the user
interacts with the web application. This requires a large
amount of communication between the web browser and
the server. RAP tries to minimize the network traffic by
transferring only the changes to the user interface instead
of the whole page. Despite this optimization, RAP is still
very sensitive to network latency. Because every user
interaction requires a corresponding network
communication, RAP applications tend to become
unresponsive if network latency is high [3].

Deployment
RAP-based applications can be deployed either as

standalone server applications (based on the OSGi HTTP
service) or as a Servlet-based web application running in
a standard Java Enterprise Edition application server. On
the client side, only a web browser is required.

LIMITATIONS
Most of the SWT, JFace and Eclipse Workbench user

interface features can be used in RAP-based web
applications. This includes perspectives, views, editors,
dialogs, tool bars, context menus, and menu bars.
However, one limitation is that RWT does not provide a
graphics context object, so it is not possible to use code
which calls drawing operations.

This means that custom SWT widgets which use
primitive drawing operations cannot be directly used in a
RAP application. To create custom widgets for RAP,
knowledge of JavaScript is required because a JavaScript-
based implementation of the widget must be provided to
RWT.

RAP does also currently not support the Eclipse
Graphical Editing Framework (GEF).

Another limitation is that RCP applications that are
ported to the web using RAP will usually not have the
look and feel which is typical for web applications. The
style of interaction that is typical for the web is a page-
based model, while RAP simply uses the windowing
model used by the Eclipse Workbench. Whether or not
this is seen as a disadvantage of course depends on the
specific application and the expectations of the users.

THE E4 PROJECT
The E4 project is an Eclipse project which aims to

develop the next major version of the Eclipse platform
[4]. The project consists of many subprojects which deal
with different aspects of improving the Eclipse platform.
One of the goals of the E4 project is to improve the
portability of Eclipse applications to different platforms,
including the web.

Model-based UI
The rigid structure of the workbench is replaced by an

EMF-based model which describes the layout of the user

Figure 1: The user interface architectures of the Rich Client Platform and the Rich Ajax Platform. (Source: [2])

Proceedings of ICALEPCS2009, Kobe, Japan THP109

Web Technology

887

interface parts. Widgets are instantiated based on this
model. This opens up the possibility to create not only
SWT widgets but also other kinds of widgets, such as
web-specific ones.

Additionally, the model will relax the structural
limitations of the containment hierarchy. For example, it
is no longer required to use perspectives. This might
enable developers to design applications that have a look
and feel which is more appropriate for the web.

Experimental Projects
There is an experimental project in the E4 context

which evaluates compiling RCP applications from Java
source code to Flex instead of Java byte code. The
compiled application would then be able to run as a Flash
application within a web browser. It is currently not clear
which features of RCP would be supported in such
applications.

IMPACT ON CONTROL SYSTEM STUDIO
Control System Studio [5] is a suite of many different

applications. Based on our previously described analyses
of RAP, we expect varying degrees of portability for the
different applications.

Applications that make use of drawing operations to
display for example charts or plots will likely not be
portable to the web based on currently available Eclipse
technologies. In particular, because the Graphical Editing
Framework is not supported by RAP, we expect that it
will not be possible to make the Synoptic Display Studio
(SDS) available as a web application.

In RAP, a single workspace is shared by all users. This
will impact all applications that use the workspace to
store files or user-specific information. If those
applications assume that access to the workspace is
exclusive, they will have to be adapted to work with
concurrent usage patterns.

CSS applications make extensive use of the Eclipse
preferences service. Due to the shared workspace in RAP
applications, preferences are also shared among all users.
These applications will have to be adapted if different
settings are required for different users or user groups.

We expect that simple diagnostic or monitoring tools
which are based on standard SWT widgets can be ported
to a RAP environment without requiring large changes.

CONCLUSION
The Eclipse Rich Ajax Platform is based on the same

APIs as the Rich Client Platform. By using RAP,
developers can leverage their existing RCP experience
when developing web applications. Developers are not
required to learn new frameworks or programming
languages in order to use RAP productively.

There are, however, some conceptual differences
between RAP and RCP applications that developers have
to be aware of. The most important difference is that RAP
applications run multiple user sessions within a single
application instance. Therefore, in order to be portable
between RCP and RAP, applications have to be
developed with multi-session support in mind.

To ensure a high degree of portability when developing
new rich client applications, our recommendation is to
maintain a clear separation of the user interface and the
application logic. Developers should also take care not to
conflate user-specific data with global application data.
We expect applications which follow these guidelines to
be portable to the web without requiring a large amount
of work, using either RAP or some other, future
technology.

REFERENCES
[1] Eclipse Foundation, “Rich Ajax Platform (RAP)”

(project web site); http://www.eclipse.org/rap/.
[2] Eclipse Foundation, “RAP Project – Introduction”;

http://www.eclipse.org/rap/introduction.php.
[3] D. Rubel and M. Russell, “RAP or GWT – Which

Java-Based AJAX Technology is for You?” (video),
EclipseCon 2009; http://live.eclipse.org/node/722.

[4] K. McGuire and M. Oberhuber and S. Northover and
J. Krause and B. Galbraith, “e4 Project in Review”
(video), EclipseCon 2009;
http://live.eclipse.org/node/737.

[5] “Control System Studio – CSS” (project web site);
http://css.desy.de/.

THP109 Proceedings of ICALEPCS2009, Kobe, Japan

Web Technology

888

