
ALMA SOFTWARE PROJECT MANAGEMENT
LESSONS LEARNED

G. Raffi*, ESO, Garching, Germany
B. E. Glendenning, NRAO, Socorro, New Mexico, U.S.A.

Abstract

The Atacama Large Millimeter/Submillimeter Array
(ALMA) is the largest radio telescope currently under
construction by a world-wide collaboration. The first
antennas (the total will be 54 12m antennas and 12 7m
antennas) are being commissioned to become part of the
interferometer at a high site (5000m) in Chile. The ALMA
Software (~ 70% completed) is in daily use and was
developed as an end-to-end system including proposal
preparation, dynamic scheduling, instrument control, data
archiving, automatic and manual data processing, and
support for operations. The management lessons learned
will be explained. Aspects described will go from
requirements analysis to the use of a development
framework: ALMA Common Software (ACS) in our case.
The process used to provide regular releases will be
outlined, including temporary cross-subsystem teams. The
importance of integrated regression tests will be stressed,
but also the need to validate the system with users.
Among the project management tools risk analysis,
earned value measures and tracking of requirements
completion will be presented. Monitoring progress with
reviews and the possible impact on completion dates will
also be discussed.

ALMA SOFTWARE HIGHLIGHTS
Figure 1 shows the first ALMA antenna that was

moved after several months of testing at 3000m to the
high site (the Chajnantor plateau) at 5000m on Sep.23,
2009. The antenna is visible on its transporter, which
allows not only movement to the high site but also
reconfiguration of the antenna array at the high site.
Antennas can move around on different pads reaching out
configurations over total distances of about 40 km.

The ALMA software is an end-to-end system
consisting of the following main parts:

• Proposal and observing preparation (Fig.2)
• Dynamic scheduling
• Instrument control
• Data archiving
• Automatic and manual data processing
• Support for operations
 So this includes much more than the control system for

the antennas and correlator, and receivers. It provides
obviously the way the whole astronomy done with
ALMA is organized and perceived by users.

 (*) graffi@eso.org

The ALMA collaboration has three main partners in
Europe (ESO), North America (NRAO) and Japan
(NAOJ) with many other Institutes in other Countries
associated with them. A large software group exists now
also at the Observatory.

Figure 1: ALMA antenna moving up to the high plateau
of Chajnantor.

The following figures characterize the software project:
• Developers are distributed over 4 continents and 15

locations. There are about 80 people concerned with
software development and testing

• The present size of the ALMA software is about
2000 kLines of specially developed source code.
More than 70% is complete. (Fig.3)

The ALMA software is in use for commissioning at the
ALMA Observatory in Chile.

Proceedings of ICALEPCS2009, Kobe, Japan TUD004

Project Management & System Engineering

349

Figure 2: Observation Preparation: Spatial Editor
(developed in collaboration by UK ATC and ESO).

SOFTWARE PROJECT MANAGEMENT
ASPECTS

The following aspects of the ALMA software project are
here considered:
• Distributed Team Management (Most important:

Wiki, CVS, regular telecons, F2f meetings)
• Requirement and tracking progress
• Use of a development framework: ALMA Common

Software (ACS)
– Software written with ACS implicitly uses

its architecture. This is good for distributed
development to maintain consistency
between different developers.

• Releases at fixed dates and Planning
• Temporary cross-subsystem teams
• Integrated regression tests by an independent team

– And need to validate the system with users.
• Project management tools: risk analysis, earned value

measures
• Reviews to monitor progress: Internal and External
• Problems reporting (JIRA system)

(*) Based on the container-component paradigm and

using CORBA. The system allows the use of C++, JAVA
and Python on Linux operating systems.

Paper [1] gives more details on management aspects, as
seen by us one year ago.

LESSONS LEARNED
In the following section the various aspects of the

ALMA software management are listed in a schematic
form indicating what has been important in our
experience.
1. Requirements collection (with Use Cases) was

important. We were in the lucky situation of having a
dedicated team of astronomers who took an active
participation in requirements writing, including

relevant Use cases. They then gave advice on how to
detail requirements and in this phase the team,
augmented with ALMA astronomers, performs user
tests.
 Advantage:

– There will be still missing or late
requirements, but design is mostly done
upfront

 Advice:
– Requirements working group to be

recommended
– Tracking requirements completion to show

progress (planned vs. actual) is relevant for
future planning purposes.

2. Using a software framework - ALMA Common
Software (ACS) in our case (although most of what
follows would apply also to EPICS, TANGO etc) is
very important.
 Advantages:

– Allows collaborative work, homogeneous
system;

– Provides a solid debugged base of software
Enforces also hardware standards and
operating system versions;

– Makes large distributed projects manageable
and maintainable;

 Advice:
– Requires team discipline and managerial

support;
– and Learning (yearly ACS courses in our

case).
See also poster [2] and paper [3] at this conference.
Paper [4] gives a realistic view of the development

process and effort.

Figure 3: Source Lines of Code/Computing subsystem.

3. Incremental Releases at fixed dates (vs. fixed
content) twice/year

– Software is developed incrementally in 6
monthly steps (Releases).

– Releases are an integrated e2e system
– Patches allow to upgrade a few computing

subsystems (typically 1 per Release cycle).

TUD004 Proceedings of ICALEPCS2009, Kobe, Japan

Project Management & System Engineering

350

 Advantages:
– Easier integration, predictable dates by

project
– Planning work is for 6 months and can be

tuned to project priorities
 Advice:

– Give priority to testing and making releases
over development when deadlines approach

4. Cross-subsystem Function Based Teams (FBTs)
 (~3 months)

This is more important for a large,
geographically distributed team in order to avoid
an integration hell at every Release.

 Advantages:
– Implement important functionality reducing

impact of changing interfaces
– Make integration easier, as inter-subsystem

issues get sorted out continuously.
– Integrations are more frequent, which is

more important with a geographically
distributed team

5. Integration tests (by independent team)
Advantages:

– In addition to subsystem tests (also by users
– build-in test time up front). Avoids
expensive test time at the Observatory with
everybody else waiting.

– Regression tests, eventually mostly
automatic should further reduce integration
tests times.

 Advice:
– Require good test models (several

computers)
– … but cannot replace tests with real

hardware
– therefore defend towards the rest of the

project the need of significant test time with
the hardware and time to fix issues before
software gets used

– .. You will get anyhow all the criticism later
and it will be your problem if you did not
follow your procedures

6. Problem reporting (JIRA in our case)
Advantage:

– Important to track bugs/improvement
request.

 Advice:
– We are very happy with JIRA, but with any

system you might have important is also the
follow up.

– We have a weekly meeting to discuss issues
and flag blocking ones.

7. Project management tools.
Advice:

– Risk analysis helps project to assess
software risks

– Earned Value (apart from
Requirements tracking) was difficult for
us to apply in a meaningful way

8. Reviews (to monitor progress).
Advice:
– Internal reviews are important. We hold them

yearly. Allow incremental design and also
adjustment to priorities of project. Internal
reviews are incremental as Releases are.

– External reviews are good to prepare and
comments help to see where we really are

CONCLUSION
The ALMA software is in use at the Chile Observatory

since more than a year (having been previously tested on
prototype antennas for more than a year) and keeps being
incrementally augmented at every Release.

The procedures and organization described have
allowed us to manage it satisfactorily so far. The fact of
having such a geographically distributed team has
undoubtedly produced some inefficiency. However this
was normally counterbalanced by more rigorous
discussions ahead of time every time a design choice was
necessary. Frequent face to face meetings are
irreplaceable to avoid later surprises.

We believe that most of what is described above can be
applied to any other large project. Smaller projects also
could benefit from several of the above aspects (e.g. a
common framework, independent integration testing) as
these help to create a more predictable product, and
should help also to achieve higher quality.

ACKNOWLEDGMENTS
As the managers of the bilateral part of the ALMA

Computing team we are proud to acknowledge the
dedication of the Computing staff at ESO and NRAO, but
also at NAOJ and all other partner Institutes around the
world, who are doing a great job developing and
supporting the software for ALMA.

REFERENCES
[1] B.E.Glendenning, G. Raffi “The ALMA Computing

Project – Initial Commissioning” Proc. SPIE Vol.
7019-32, Astronomical Telescopes and
Instrumentation, Marseille, France, June 2008.

[2] G.Chiozzi et al., “ALMA Common Software (ACS)
Status and Development”, ICALEPCS2009, Kobe,
Japan, October 2009, these proceedings.

[3] J.Avarias H.Sommer G.Chiozzi, “Data Distribution
Service as an alternative to CORBA Notify Service
for the ALMA Common Software, ICALEPCS2009,
Kobe, Japan, October 2009, these proceedings.

[4] J.Schwarz et al., “The ALMA Common Software —
Dispatch from the trenches”, Proc. SPIE Vol. 7019-
32, Astronomical Telescopes and Instrumentation,
Marseille, France, June 2008.

Proceedings of ICALEPCS2009, Kobe, Japan TUD004

Project Management & System Engineering

351

