
A FRAMEWORK FOR AUTHENTICATION AND AUTHORIZATION IN 
PLUG-IN-BASED CONTROL SYSTEM SOFTWARE 

M. Clausen, J. Hatje, H. Rickens, DESY, Hamburg, Germany 
J. Rathlev, University of Hamburg, Germany

Abstract 
Preventing unauthorized use is a concern for many 

software systems, including control system software. The 
authorization mechanism used by a system should be 
pluggable, so that the software is not tied to a specific 
infrastructure. For the Control System Studio (CSS), we 
have developed a generic authorization framework which 
can be used by applications built on top of CSS to 
authorize user actions. For example, the framework 
provides support for the creation of menu items or 
graphical display elements that are automatically enabled 
and disabled based on the user’s permissions. The 
framework is implemented in plug-ins which can be 
exchanged to interact with different infrastructures. 
Currently available implementations use standard Java 
authentication and authorization techniques to integrate 
with Kerberos and LDAP systems. 

INTRODUCTION 
Many applications require the ability to allow or deny 

access to certain functionality based on the permissions of 
the user. This is known as authentication and 
authorization. Authentication is the act of verifying the 
identity of the user, for example, based on the 
combination of the user name and a password known only 
to the user. Authorization includes granting permissions 
to a user, and checking whether the user has the required 
permissions when he uses some restricted functionality of 
an application. 

To support authentication and authorization in Control 
System Studio (CSS) applications, we have developed an 
authorization framework which can be used by 
application plug-ins to implement permission-based 
access restrictions. The framework was originally 
developed as part of a diploma thesis at the University of 
Hamburg [1] and has since been integrated into the CSS 
platform. 

In the following sections, we describe the architecture 
and functionality of the framework, how to use it, and the 
currently available implementations. In the section 
“Security Considerations”, we describe how the 
framework fits into an overall security strategy. 

AUTHORIZATION SUPPORT IN 
CONTROL SYSTEM STUDIO 

The basic architecture of the framework is shown in 
Figure 1. Applications in the Control System Studio are 
implemented as plug-ins. These applications are built on 
top of the CSS Platform, which provides a common basis 
for their implementation. One of the features offered by 

the CSS Platform is the authentication and authorization 
framework. 

In its implementation, the framework relies on a login 
module and an authorization provider. The login module 
is responsible for performing the actual authentication of 
the user. The authorization provider is responsible for 
retrieving the list of permissions that are granted to the 
user and the permissions that are required for an action. 
Both the login module and the authorization provider are 
contributed to the framework as extensions via the 
Eclipse extension point mechanism. Thus, the login 
module and the authorization provider can be contributed 
by plug-ins, which can be exchanged in order to support 
integrating the CSS with different authorization 
infrastructures. 

In their implementation, the login module and the 
authorization provider can connect to existing 
authentication and authorization services, for example, a 
Kerberos domain and an LDAP directory. 

One of the main design goals of the CSS authorization 
framework was to support not only the activation and 
deactivation of certain actions based on the user’s 
permissions, but also to integrate the authorization 
mechanism with the user interface. To achieve a high 
usability, users should be able to see which actions are 
available to them. For this purpose, the CSS Platform 
includes an Activation Service which can for example be 

Figure 1: Architecture of the CSS authorization 
framework. 

Proceedings of ICALEPCS2009, Kobe, Japan TUP015

Operational Tools

123



used to automatically activate and deactivate UI widgets 
based on the current permissions of the user. 

To identify actions that require permission, the 
framework uses simple strings called permission IDs. The 
advantage of this design is that it makes almost no 
assumptions about the organization of permissions, so it is 
very flexible. The downside is that because no 
hierarchical or other relationship of permission IDs is 
supported, the management of permissions may become 
complex if a large number of different permission settings 
have to be managed. 

USING THE FRAMEWORK 
There are two main entry points through which 

developers can use the framework, the Security Façade 
and the Activation Service. 

The Security Façade is a simple, low-level API which 
can be used to directly check whether a specific 
permission is granted to the current user. The Security 
Façade also provides methods to register listeners which 
will be notified when the user’s permissions change. 

The Activation Service automatically activates and 
deactivates arbitrary objects based on the current user’s 
permissions. It uses adapters to activate and deactivate the 
objects, so it can manage all types of objects for which an 
adapter is available. The adapter determines how 
activation and deactivation are implemented, so different 
adapters can be used to support different behaviours. For 
example, an adapter for menu actions could either disable 
or hide a menu item if the user does not have the required 
permission to use it. 

The main purpose of the Activation Service is to 
automatically enable and disable user interface widgets. 
The CSS Platform provides adapters for Eclipse actions 
and SWT widgets, and the Synoptic Display Studio (SDS) 
provides an adapter for SDS widgets. Developers can 
implement additional adapters for their own objects. 

In addition to the Security Façade and the Activation 
Service, the framework also includes some convenience 
classes that simplify its usage. For details, please see the 
CSS Platform’s API documentation. 

IMPLEMENTATIONS 
DESY provides a login module implementation based 

on the Java Authentication and Authorization Service 
(JAAS) and an authorization provider based on LDAP. 

The JAAS login module authenticates the user based on 
a standard JAAS configuration. At DESY, we use this 
module to authenticate users against a Kerberos server. 
The same module could also be used with other 
authentication services that support the JAAS standard. 

To store the permission information, we use an LDAP 
directory, which is read by an LDAP Authorization 

Provider. We have designed a custom LDAP schema 
which is based on user groups and roles. Each user can 
belong to one or more groups with one or more roles, and 
each action can be permitted for a number of role-group 
combinations. 

SECURITY CONSIDERATIONS 
The CSS authorization framework is a client-side 

framework, that is, it performs authentication and 
authorization only within a single CSS application 
instance. It can be used to authenticate local users (and it 
can use a remote authentication service to do so), but it 
does not currently support the authentication of remote 
users. 

Because the identity and permissions of remote users 
cannot be checked, the framework cannot be used on a 
server to prevent unauthorized access to the resources or 
services offered by the server. Such services must 
therefore be secured by other means. For example, access 
to an EPICS IOC can be restricted by using the Channel 
Access Security support. When such mechanisms are 
used, integration with the user interface on the client side 
must also be achieved by other means. For example, the 
Synoptic Display Studio integrates Channel Access 
Security information into the user interface by changing 
the mouse cursor depending on the user’s Channel Access 
permissions. 

Another important consideration is that because the 
login module and authorization provider are connected as 
extensions, a malicious user could circumvent the 
authorization by providing his own plug-ins, which 
simply claim that he is authorized to do everything. To 
prevent such attacks, additional security measures are 
required. For example, a system administrator could 
prevent users from installing their own plug-ins, or allow 
them to install only trusted, digitally signed plug-ins [1]. 

CONCLUSION 
The CSS Platform provides an authorization framework 

which can be used by client applications that require 
authentication and authorization of users. The framework 
is based on plug-ins, which can be exchanged in order to 
integrate with different authentication and authorization 
infrastructures. 

REFERENCES 
[1] K. Meyer and T. Witte, „Benutzerautorisierung mit 

Anbindung an die Benutzungsoberfläche von Rich-
Clients auf Basis der Eclipse RCP“ (diploma thesis), 
University of Hamburg, Department of Informatics, 
2007. 

 
 

 

TUP015 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

124


