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Abstract
We present  a  development  tool  that  generates  source

code  to  marshal  and  unmarshal  messages.  The  code
generator  creates  modules  for  differing  processor
architectures and programming languages.

INTRODUCTION
The Fermilab Control System has dozens of protocols

carried by the ACNET transport  layer.  These protocols
are  responsible  for  acquiring  real-time  data,  reporting
alarm conditions, reporting changes to the central device
database,  broadcasting  Tevatron  clock  events,  and
announcing state changes, among others.

The  network  representation  of  these  protocols  has
always  been  based  upon  the  layout  of  a  C-language
structure targeted for a little-endian machine. Given the
historical  choices  of  hardware  at  Fermilab,  this  has
worked well for many years.

As  the  control  system continues  to  evolve,  however,
this approach becomes error prone. Modules supporting
various processor types must make sure bytes are ordered
correctly. Also, with the inclusion of Java to our control
system,  we  lose  the  ability  to  incorporate  the  raw  C
structures that describe the protocol and instead need to
process the data piece by piece.

This methodology can, clearly, be improved.

REQUIREMENTS
The  development  process  for  new  protocols  should

meet the following criteria:
• It  must  remove  the  tedious  and  fallible  aspects  of

encoding/decoding  messages;  programmers  should
no longer be concerned with endianness and packet
layout.

• It should provide message validation. When sending
a message, it always generates a well-formed packet.
When  receiving,  it  performs  sanity  checks  before
accepting and decoding the message.

• The generated code should allow the messages to be
manipulated naturally in the target language.

• Support  the  strongest  type-safety  available  in  the
target language.

• Message  encoding  and  decoding  needs  to  be  fast,
since it is competing with access of raw C structures.

• Must  generate  code  for  all  primary  programming
languages used at Fermilab (i.e. currently C++, Java
and Python).

• The resulting binary message must be self describing
thus having the ability to be manually decoded “on
the wire”.

INVESTIGATIONS
We investigated several current technologies to see if

an adequate solution was already available.
XML (eXtensible Markup Language) was considered,

since  it  has  document  validators  and  supports  multiple
target  languages.  Unfortunately,  XML  manipulation
libraries  aren't  known  for  their  speed.  Plus,  document
validation requires us to provide a DTD (Document Type
Definition)  file  to  be available – typically  accessed via
HTTP.

JSON  (JavaScript  Object  Notation)[1] was  also
investigated.  It's  available  for  many  programming
languages through third-party libraries and is reasonably
efficient  to  parse  and  generate.  Our  greatest  concern,
however, is that, since floating point values are converted
to and from ASCII representations, we could lose some
least significant digits during the translation.

One  of  the  last  projects  we  researched,  Google's
Protocol  Buffers[2],  looked  very  promising.  It  meets
nearly all of our requirements except where we need to
easily decode packets using network diagnostic utilities.
This requisite comes from the “Project X Control System
Requirements”  document.  Protocol  Buffers  encode  the
message in a binary form that is only decodable by the
client. Despite this limitation, this project sparked the idea
of using a code generator to create the encoder/decoder
(previously we were considering using a dynamic API,
similar what DOM libraries do.)

THE COMPILER
To  meet  our  requirements,  we  created  the  “protocol

compiler”. The compiler is a command line tool that can
be invoked by a makefile to convert a protocol source file
into a source file of the target language. By convention,
the source file uses a .proto extension. The generated files
have  the  same  base  name,  but  with  the  appropriate
extension used by the target language.

Grammer
The grammar used by the protocol compiler is given in

Extended Backus-Naur Form in Figure 1.
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Figure 1: Protocol Compiler Grammar.

Field Types
Messages  need  a  payload  to  transfer  information

between processes, so we needed to pick a set of useful
data types that clients could exchange. In choosing which
subset of data types we should allow, we tried to find a
common set available among the languages we eventually
want  to  support.  Since  most  languages  don't  support
unsigned  integers,  they  were  left  out.  Some languages,
like Python, only support 64-bit floating point, so there's
only one floating point form used.

Based on these constraints, we end up with the set of
primitive types consisting of boolean; signed 16-bit, 32-
bit, and 64-bit integers; 64-bit floating point; strings; and
binaries. Table 1 shows how these types are mapped to
two target languages.

Strings  are  simply  a  sequence  of  octets.  They  get
mapped  to  std::string  and  String  in  the  C++  and  Java
mapping,  respectively,  so  they  can  include  NUL
characters.  A protocol designer may decide that  strings
contain a simple ASCII string or a UTF-8 encoded value.

A new type can be defined using the struct keyword,
which closely follows the syntax of a structure in the C
language. In the body of the structure, all the predefined
primitive types, as well as previously defined structures,
may be used.

Fields can be prefixed with the keyword “optional” to
specify the field may be left out. How a optional value is
expressed depends on the target language's facilities. An
optional  value  that  isn't  present  requires  no  network
traffic.  An optional  value that's  specified uses  no more
network bandwidth than a required field.

An array of types is denoted by empty square brackets
following  the  field  name.  Arrays  are  homogeneous,
although they may be arrays of structures.

Table 1: Primitive Types Mapped to C++ and Java

Type C++ mapping Java mapping

bool bool boolean

int16 int16_t short

int32 int32_t int

int64 int64_t long

double double double

string string String

binary vector<uint8_t> byte[ ]

struct N struct N class N

T[ ] vector<T> T[ ]

optional T auto_ptr<T> Uses object
references

Message Types
There  are  two  message  types  exchanged  between

processes:  requests  and  replies.  In  the  protocol  file,  a
message is marked as one of the two using the request or
reply keywords.

When the compiler generates the source files,  it  uses
the target languages facilities to group requests together
and  group  replies  together.  For  example,  the  C++ and
Java generators create a class hierarchy for request objects
and  a  separate  hierarchy  for  reply  objects.  By  tightly
binding each message type in their own hierarchy, they
become  a  data  type  that  the  compiler  can  verify  and
enforce.

Functions that send a message should specify the base
class of  the message as a  parameter.  The compiler  can
then guarantee at compile time that only proper messages
are sent. The verification of received messages is done at
run-time.  The  decoding  function  either  returns  a  fully
decoded  message  or  reports  an  error  if  the  message  is
badly formed (usually done by throwing an exception.)

Message Flow
Message flow statements follow after the last message

definition  in  a  protocol  file.  It  is  defined  using  the
“returns” operator “->” as shown is Figure 1. All request
messages  require  a  flow statement  which details  which
replies, if any, can be expected. Code generation is not
affected by the “returns” statement, so it merely a way of
forcing  minimal  protocol  documentation  since  the
protocol file will not compile in its absence.

<protocol> ::= <struct>*, <request-message>+,
<reply-message>*

<request-message> ::= “request”, <message-name>, “{“,
<field>*, “}”

<reply-message> ::= “reply”, <message-name>, “{“ <field>* “}”

<struct> ::= “struct”, <struct-name>, “{“ <field>* “}”

<field> ::= [“optional”], <type>, <field-name>, [“[]”], “;”

<type> ::= “bool” | “int16” | “int32” | “int64” | “double” | “string” |
“binary” | “struct”, <struct-name>

<message-name> ::= [_a-zA-Z], [_a-zA-Z0-9]*

<struct-name> ::= [_a-zA-Z], [_a-zA-Z0-9]*

<field-name> ::= [_a-zA-Z], [_a-zA-Z0-9]*

<reply-type> ::= “single” | “multiple”, <reply-message>

<request-message>+ ::= “->”, <reply-type>+, “|”, <replytype>* |
“nothing”
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Encoding
Messages  are  encoded  using a  self  describing  binary

tagged format. It only takes a single pass through the data
for both encoding and decoding packets.

CONCLUSIONS
The protocol compiler is a useful tool when designing

new protocols. We've had the chance to use it recently for
new protocols we've created. In each case, we no longer
had to deal  with  byte ordering bugs or  field alignment
errors.  C++  and  Java  clients  were  easily  able  to
communicate  with  each  other  and  we  could  focus  our
efforts  on  the  applications  themselves,  rather  than  the
low-level details.

Although the protocol compiler only generates C++ and
Java  source  files,  we  plan  on  adding  more  target

languages.  Fermilab  has  a  fairly  large  community  of
Python programmers, so Python is a priority and will be
added next.

Lastly,  although  we  use  the  protocol  compiler  for
developing ACNET applications, there is nothing in the
protocol compiler that depends on ACNET. We encode
and decode messages into a buffer that is sent to ACNET
for delivery. The generated classes could just as easily be
used to send messages across a TCP socket, or to read and
write data in a file.
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