
GENERATION OF SIMPLE, TYPE-SAFE MESSAGES FOR INTER-TASK
COMMUNICATIONS

R. Neswold, C. King
FNAL†, Batavia, IL 60510, U.S.A.

Abstract
We present a development tool that generates source

code to marshal and unmarshal messages. The code
generator creates modules for differing processor
architectures and programming languages.

INTRODUCTION
The Fermilab Control System has dozens of protocols

carried by the ACNET transport layer. These protocols
are responsible for acquiring real-time data, reporting
alarm conditions, reporting changes to the central device
database, broadcasting Tevatron clock events, and
announcing state changes, among others.

The network representation of these protocols has
always been based upon the layout of a C-language
structure targeted for a little-endian machine. Given the
historical choices of hardware at Fermilab, this has
worked well for many years.

As the control system continues to evolve, however,
this approach becomes error prone. Modules supporting
various processor types must make sure bytes are ordered
correctly. Also, with the inclusion of Java to our control
system, we lose the ability to incorporate the raw C
structures that describe the protocol and instead need to
process the data piece by piece.

This methodology can, clearly, be improved.

REQUIREMENTS
The development process for new protocols should

meet the following criteria:
• It must remove the tedious and fallible aspects of

encoding/decoding messages; programmers should
no longer be concerned with endianness and packet
layout.

• It should provide message validation. When sending
a message, it always generates a well-formed packet.
When receiving, it performs sanity checks before
accepting and decoding the message.

• The generated code should allow the messages to be
manipulated naturally in the target language.

• Support the strongest type-safety available in the
target language.

• Message encoding and decoding needs to be fast,
since it is competing with access of raw C structures.

• Must generate code for all primary programming
languages used at Fermilab (i.e. currently C++, Java
and Python).

• The resulting binary message must be self describing
thus having the ability to be manually decoded “on
the wire”.

INVESTIGATIONS
We investigated several current technologies to see if

an adequate solution was already available.
XML (eXtensible Markup Language) was considered,

since it has document validators and supports multiple
target languages. Unfortunately, XML manipulation
libraries aren't known for their speed. Plus, document
validation requires us to provide a DTD (Document Type
Definition) file to be available – typically accessed via
HTTP.

JSON (JavaScript Object Notation)[1] was also
investigated. It's available for many programming
languages through third-party libraries and is reasonably
efficient to parse and generate. Our greatest concern,
however, is that, since floating point values are converted
to and from ASCII representations, we could lose some
least significant digits during the translation.

One of the last projects we researched, Google's
Protocol Buffers[2], looked very promising. It meets
nearly all of our requirements except where we need to
easily decode packets using network diagnostic utilities.
This requisite comes from the “Project X Control System
Requirements” document. Protocol Buffers encode the
message in a binary form that is only decodable by the
client. Despite this limitation, this project sparked the idea
of using a code generator to create the encoder/decoder
(previously we were considering using a dynamic API,
similar what DOM libraries do.)

THE COMPILER
To meet our requirements, we created the “protocol

compiler”. The compiler is a command line tool that can
be invoked by a makefile to convert a protocol source file
into a source file of the target language. By convention,
the source file uses a .proto extension. The generated files
have the same base name, but with the appropriate
extension used by the target language.

Grammer
The grammar used by the protocol compiler is given in

Extended Backus-Naur Form in Figure 1.

†Operated by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the United States Department of Energy.

Proceedings of ICALEPCS2009, Kobe, Japan TUP024

Operational Tools

137

Figure 1: Protocol Compiler Grammar.

Field Types
Messages need a payload to transfer information

between processes, so we needed to pick a set of useful
data types that clients could exchange. In choosing which
subset of data types we should allow, we tried to find a
common set available among the languages we eventually
want to support. Since most languages don't support
unsigned integers, they were left out. Some languages,
like Python, only support 64-bit floating point, so there's
only one floating point form used.

Based on these constraints, we end up with the set of
primitive types consisting of boolean; signed 16-bit, 32-
bit, and 64-bit integers; 64-bit floating point; strings; and
binaries. Table 1 shows how these types are mapped to
two target languages.

Strings are simply a sequence of octets. They get
mapped to std::string and String in the C++ and Java
mapping, respectively, so they can include NUL
characters. A protocol designer may decide that strings
contain a simple ASCII string or a UTF-8 encoded value.

A new type can be defined using the struct keyword,
which closely follows the syntax of a structure in the C
language. In the body of the structure, all the predefined
primitive types, as well as previously defined structures,
may be used.

Fields can be prefixed with the keyword “optional” to
specify the field may be left out. How a optional value is
expressed depends on the target language's facilities. An
optional value that isn't present requires no network
traffic. An optional value that's specified uses no more
network bandwidth than a required field.

An array of types is denoted by empty square brackets
following the field name. Arrays are homogeneous,
although they may be arrays of structures.

Table 1: Primitive Types Mapped to C++ and Java

Type C++ mapping Java mapping

bool bool boolean

int16 int16_t short

int32 int32_t int

int64 int64_t long

double double double

string string String

binary vector<uint8_t> byte[]

struct N struct N class N

T[] vector<T> T[]

optional T auto_ptr<T> Uses object
references

Message Types
There are two message types exchanged between

processes: requests and replies. In the protocol file, a
message is marked as one of the two using the request or
reply keywords.

When the compiler generates the source files, it uses
the target languages facilities to group requests together
and group replies together. For example, the C++ and
Java generators create a class hierarchy for request objects
and a separate hierarchy for reply objects. By tightly
binding each message type in their own hierarchy, they
become a data type that the compiler can verify and
enforce.

Functions that send a message should specify the base
class of the message as a parameter. The compiler can
then guarantee at compile time that only proper messages
are sent. The verification of received messages is done at
run-time. The decoding function either returns a fully
decoded message or reports an error if the message is
badly formed (usually done by throwing an exception.)

Message Flow
Message flow statements follow after the last message

definition in a protocol file. It is defined using the
“returns” operator “->” as shown is Figure 1. All request
messages require a flow statement which details which
replies, if any, can be expected. Code generation is not
affected by the “returns” statement, so it merely a way of
forcing minimal protocol documentation since the
protocol file will not compile in its absence.

<protocol> ::= <struct>*, <request-message>+,
<reply-message>*

<request-message> ::= “request”, <message-name>, “{“,
<field>*, “}”

<reply-message> ::= “reply”, <message-name>, “{“ <field>* “}”

<struct> ::= “struct”, <struct-name>, “{“ <field>* “}”

<field> ::= [“optional”], <type>, <field-name>, [“[]”], “;”

<type> ::= “bool” | “int16” | “int32” | “int64” | “double” | “string” |
“binary” | “struct”, <struct-name>

<message-name> ::= [_a-zA-Z], [_a-zA-Z0-9]*

<struct-name> ::= [_a-zA-Z], [_a-zA-Z0-9]*

<field-name> ::= [_a-zA-Z], [_a-zA-Z0-9]*

<reply-type> ::= “single” | “multiple”, <reply-message>

<request-message>+ ::= “->”, <reply-type>+, “|”, <replytype>* |
“nothing”

TUP024 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

138

Encoding
Messages are encoded using a self describing binary

tagged format. It only takes a single pass through the data
for both encoding and decoding packets.

CONCLUSIONS
The protocol compiler is a useful tool when designing

new protocols. We've had the chance to use it recently for
new protocols we've created. In each case, we no longer
had to deal with byte ordering bugs or field alignment
errors. C++ and Java clients were easily able to
communicate with each other and we could focus our
efforts on the applications themselves, rather than the
low-level details.

Although the protocol compiler only generates C++ and
Java source files, we plan on adding more target

languages. Fermilab has a fairly large community of
Python programmers, so Python is a priority and will be
added next.

Lastly, although we use the protocol compiler for
developing ACNET applications, there is nothing in the
protocol compiler that depends on ACNET. We encode
and decode messages into a buffer that is sent to ACNET
for delivery. The generated classes could just as easily be
used to send messages across a TCP socket, or to read and
write data in a file.

REFERENCES
[1] Crockford, D. “RFC 4627 – JSON” The Internet

Engineering Task Force. The Internet Engineering Task
Force. 29 Sep. 2009 http://www.ietf.org/rfc/rfc4627.txt?
number=4627

[2] “protobuf.” Project Hosting on Google Code. Google, Inc.
29 Sep. 2009 http://code.google.com/p/protobuf/

Proceedings of ICALEPCS2009, Kobe, Japan TUP024

Operational Tools

139

