
VERSATILE NETWORK STREAM CAPTURE TOOL USING JAVA
FOR HIGH ENERGY ACCELERATOR CONTROL SYSTEMS

Shintaro Mori, Akihiko Shikanai, Takuya Saito, Hideyuki Hayami, Noriichi Kanaya,
Graduate School of Science and Engineering,

University of Ibaraki, Hitachi, Ibaraki, 316-8511, Japan

Abstract
   A network stream capture tool has been developed to
monitor  and  capture  control  data  and  information
encapsulated  in  network  stream  for  distributed  control
systems  for  high  energy  accelerators.  The  tool  allows
capturing data streams between specific computers,  and
dumping  the  stream  data  into  a  file.  The  data  can  be
browsed  using  graphic  user  interface  (GUI),  either  in
binary,  ASCII,  and  hexadecimal  format  to  analyze  and
debug  communication  protocol  employed  among
computers  for  the  control  systems.  The  tool  has  been
implemented  using  Java,  and  thus  ported  to  various
platforms,  including  Linux,  Solaris  and  Windows,
providing  versatile  functionality  necessary  for  multi-
computer  control  systems.  This  paper  describes  design
and implementation of the network stream capture tool in
detail.

INTRODUCTION
Control systems for high energy accelerators are mostly

based on client/server model employing many computers
and  network  in  order  to  access  components  of  the
accelerators  [1],[2],[3].  Obviously  a  high  energy
accelerator  has  a  large  number  of  components  that  are

remotely distributed along the circular vacuum chamber
of the doughnut.  The clients  and servers  of the control
system are usually running under not the same operating
systems  or  platforms.  Without  monitoring  the  network
stream between the clients and servers on the network it
tends to be difficult to debug such clients/remote-servers
along the large accelerator. Thus, a packet capturing tool
is  necessary  to  develop  the  distributed  control  system.
Furthermore, unlike a freely available tool for a specific
platform, we need the tool that can operate under multi-
platforms,  such  as  Linux  (with  different  distributions),
Solaris and Windows (for console). There is also the case
that  embedded  interface  systems,  that  provide
interconnection  capabilities  between  computers  and
accelerator  components,  have  no  operating  system  but
UDP stacks [4].

To achieve this goal, a versatile network stream capture
tool has been implemented for the purpose of debugging
the  client/server  systems,  i.e.,  control  systems  for
accelerators. The tool must have the following principal
functions:(1)capturing  packet  stream,  (2)viewing  filter
capability, (3) data-dump, (4) GUI, and (5) it  has to be
able  to  run  under  different  platforms.  The  design  and
implementations of the tool is described.

Figure  1:  Network  stream  capture  tools  tapping  the  incoming/outgoing  packet  stream  through  NICs  on  various
platforms.

Proceedings of ICALEPCS2009, Kobe, Japan TUP030

Operational Tools

149



Figure 2: Block diagram of the network stream capture tool in the host computer.

CONFIGURATION
Figure 1 shows the simplified diagram of the network

stream  capture  tool.  Since  Java  has  no  direct  API  to
access  the  physical  NIC(s),  Jpcap  library,  which  has
JNI(Java Native Interface) layer, is employed[5]. Jpcap is
a  primitive  protocol  parser  that  allows  application
program to fetch data stream i.e., packet, from the NIC
and  decomposes  its  header  into  the  control  fields
associated  with  the  packet.  With  the  aid  of  Jpcap,  the
network  stream  capture  tool  (NSCT)  has  been
implemented in Java. 

It  allows  operating  under  different  platforms  for
accelerator control systems. NSCT can 'tap' and capture
incoming and outgoing packet-stream through the NIC of
the  computer  as  shown  in  Fig.2.  Unlike  the  network
analyzer there is no need to capture packet stream outside
the  computers  but  through  the  NIC since  we  focus  on
only  information  in  terms  of  data  flow  and  packets
between the client and the server. Thus there must be an
NSCT on each client (or server) side to acquire the data
stream. This greatly reduces overhead of the tool. NSCT
has  been  implemented  by  integrating  the  following
functionality:

(1)Capturing packet stream  and viewing-filter capability,
 NSCT extracts the following information specified

by  user  and  depicts  on  the  display  (Fig.3)  which
shows  protocols,  source/destination  addresses,  and
port ids. By analyzing the control fields of the packet,
the  contents  of  the  packets  are  displayed  in
accordance  with  combination  of  the  following
protocols: TCP, UDP, ICMP and ARP. By default, it
depicts all possible protocols in packet stream. On top
half of the screen, a sequence number and time-stamp
both  added  by  the  tool  are  shown  to  identify  the
packets.  The device  name of  NIC is  provided as  a

vender's  ID,  and  it  always  the  same  since  the  tool
recognizes only one NIC at the same time.

From left to right, protocols, data-length or size in
bytes of the packets are depicted. Showing the data-
length of the packets gives a simple clue to debug the
system when the  packet  is  unexpected surplus  data
caused by bug or network failure. One can make sure
that the packet is exactly designated from the source
and destination IP addresses with the specified port
ids just by browsing the GUI of the tool.

By  default,  NSCT  shows  the  contents  of  all
packets.  However,  one  can  chose  specific  source
address  or  destination  address  to  capture  such  data
stream (Fig.2). 

(2) Dump function,
An error may occurs in a long time interval when

the control system is in operation during debugging
stage. It is difficult to find out such inherent bug in
erroneous  communication  program.  The  tool  can
dump data stream into a file for a specific duration,
for  hours,  so  that  one  can  analyze  and  inspect  the
packets in the dump file later. The tool has a GUI to
provide similar screen after analyzing the contents of
the dump file.

(3) And user friendly GUI with remote-viewing function.
 As shown in Figure 3, the GUI of the tool depicts

the data stream captured. Binary data stream captured
from a NIC of server is depicted on the left and its
ASCII  printable  characters  on  the  right  while
unprintable  characters  are  indicated  by  period.  It
allows  identifying  what  command  characters  were
sent to the server from the client. 

For  front-end  interfaces,  such  as  reconfigurable
embedded  interface  systems,  they  usually  have  no
NIC but  stacks  for  UDP or  TCP/IP communication
[4]. The tool has a remote-viewing function useful

TUP030 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

150



Figure 3: GUI of the network stream capture tool.

for debugging purpose. Once the tool running on the
server side captures and dumps data streams, into the
file,  between the server and the embedded interface
systems on the network. The tool running on another
host has a remote-viewing function that can fetch the
file containing the dumped stream data on the server.
This  is  done  by  accessing  that  server  through  the
network.  Then  the  tool  running  at  the  remote  host
provides the analyzed data onto the screen as if  the
tool were residing on the embedded interface systems.
This  tool  provides  important  information  in
developing such front-end interfaces for accelerators
although  the  tool  captures  only  data  stream on  the
server side but not exact data stream received at the
embedded interface system.

The  tool  is  applicable  even  to  network
communication  system  where  command  is  not
implemented by combination of characters but binary
as  in  Java  remote method  invocation  (RMI).  Using
RMI, arguments are passed by serializing argument-
data into a byte-stream data at a server-side, and then
are transmitted to the client requested.

CONCLUSION
The  network  stream  capture  tool  provides  important

functionality for analyzing and debugging communication
packets among computers for accelerator control systems.
It is capable of running at cross-platform environments,
allowing  to  show  details  of  data  stream in  the  visible
forms among clients/servers. The tool is found to be quite
useful for even debugging front-end interface systems, for
accelerator  components,  that  have no network interface
controller but simple UDP stacks.

ACKNOWLEDGEMENT
The  authors  wish  to  express  their  gratitude  to  Prof.

Emeritus Shigeru Sato,  and Prof.  Shoji  Suzuki,  Tohoku
University for their valuable discussions.

REFERENCES
[1] N.Kanaya,  Y.Tahara,  N.Kobayashi,  S.Suzuki,  and

S.Sato,  “Asynchronous  Remote  Event  Notification
Using a Distributed Object Model for Heterogeneous
Remote Monitoring  System and  Control  System at
the 1.8-GeV Tohoku Synchrotron Radiation Source,”
IEEE Trans. Nucl. Sci., Vo1.53, No.5, Oct., 2006.

[2] Y.Tahara, N.Kanaya,  and S.Suzuki,  “Design of The
Remote Data Acquisition System Using Java JINI for
The  1.8-GeV  Synchrotron  Radiation  Beamlines  at
TSRF,” Proceedings of EPAC, France, 2002.

[3] N.Kanaya,  N.Kobayashi,  Y.Tahara,  S.Suzuki,  and
S.Sato, “Distributed Control System Using a Remote
Distributed  Object  Model  for  1.8GeV Synchrotron
Radiation  Beamlines  at  TSRF,”  IEEE Trans.  Nucl.
Sci., vol.52, No.1, Feb., 2005.

[4] M.Ariff.B.Mohtar,  T.Saito,  S.Mori,  N.Kanaya,  and
K.Furukawa,  “Reconfigurable  Embedded  Interface
System  for  High  Energy  Accelerators,”  in  these
proceedings.

[5] http://netresearch.ics.uci.edu/kfujii/jpcap/doc/
(2009.07.21).

Proceedings of ICALEPCS2009, Kobe, Japan TUP030

Operational Tools

151


