
MAKING CONTINUOUS INTEGRATION
A REALITY FOR CONTROL SYSTEMS

ON A LARGE SCALE BASIS

A. Buteau, V. Hardion, S. Le, M. Ounsy, G.Viguier, SOLEIL, Gif-sur-Yvette

Abstract
To support and maintain the control systems of a

Synchrotron source, complexity can quickly become
difficult to manage due to the large number of software
components and different versions deployed. At SOLEIL,
it soon became apparent to us that the ability to deploy the
same version of software packages across all systems
should be a strategic goal. Rigorous development
organization and configuration management enable
software packages to be built based on release tags put by
developers on each software module. Packages
integrating all these modules are then built by the
continuous integration system (Maven[1], Hudson[2],
CVS[7],). These packages are then deployed on around 20
control systems during each machine shutdown, via
system administration tools such as rsync. To ensure that
the continual pace of software changes is acceptable for
the people in charge of operating the facilities
(accelerators and beamlines), good communication and
well organized tests are very important to cope with
software regressions or local incompatibilities. Our
conclusion will give feedback from over two years’ use of
this continuous software integration scheme in real
operation.

THE CONTEXT

Missions of the ICA Group
Within the SOLEIL Computing Division, the ICA

group is in charge of Software for Controls and Data
Acquisition for the accelerators and beamlines.

Our mission covers all aspects of the software life
cycle:

• Working with machine engineers and beamline
scientists to draw up specifications.

• Designing a solution.
• Implementing or subcontracting the development of

the identified software modules.
• Maintaining these software component(s) in the long

term.
• Providing 24/7 on-call support for over 6000 hours

per year.

Relatively Large Scale Deployment
Some twenty different control systems (one for the

accelerators and one per beamline) are in operation at
SOLEIL, each one running on a dedicated TCP/IP
network. The various software packages (described
below) are hosted on over 100 UNIX servers and 200
CompactPCI crates. Over 100 operator stations

(X terminals or PCs) provide access to the GUI
applications.

Managing a Large Number of Software
Components

The layered software architecture of SOLEIL Control
Systems encompasses an impressive number of different
components:

• Three important frameworks are interconnected:
o Tango [3]
o GlobalSCREEN [4]
o Passerelle [5]

• About 300 DeviceServer classes.
• Over 150 elementary ATK [6] widgets.
• Over 40 GlobalSCREEN applications.
• Several hundred Passerelle “actors” and sequences.

“Extreme Programming” [8] Project
Management

Getting specifications from our users is often a difficult
task. For this reason an iterative approach is preferred,
whenever possible, to provide software versions to our
users at an early stage (to get their feedback and ease
further specifications) and on a regular basis (even if not
all features are complete). In our experience, this method
has proved successful in quickly obtaining user feedback,
avoiding over-specifications and minimizing integration
problems.

GOLDEN RULE No. 1:
WE KNOW WHAT WE DEPLOY

Guidelines
• “Only known AND identified versions should run

on production systems”: it is the responsibility of
each module developer to define the production
version with a CVS tag

• “All binaries must be constructed from source
code independently of the development
environment”: this ensures that all source code is
versioned into the CVS system

Package Organization
Software modules are packaged in four official software
distributions which follow our project breakdown

• DEVICE_ROOT: package containing over 300
Tango DeviceServer binaries.

• SOLEIL_ROOT: package containing standard Tango
GUI applications.

TUP050 Proceedings of ICALEPCS2009, Kobe, Japan

Project Management & System Engineering

200

• GLOBAL_ROOT: package containing the SCADA
tool used at SOLEIL and the GUI components
provided for GlobalSCREEN application
development.

• PASSERELLE_ROOT: package containing the
Passerelle sequencer and the process components
used at SOLEIL.

One engineer/technician is responsible for the integration
of each package.

Integration Tools Used to Build Each package

Build Cycle
• To find potential incompatibilities between software

layers, each package is built every week: a so called
Snapshot version is then produced without being
deployed.

• During machine shutdown (preferably at the
beginning of the shutdown), an official version
(called Release) of the package is built by
Maven/Hudson, and is deployed everywhere.

GOLDEN RULE No. 2: WE DEPLOY THE
SAME VERSIONS EVERYWHERE

Guidelines
• Official releases of all software packages are

installed on the accelerators and all the beamlines
without any exceptions.

• If problems arise with new versions, it must always
be possible to use the previous package or module
version. Nevertheless, old versions will
automatically be superseded by new versions at the
next shutdown: such exceptions to the rule are
therefore limited in time.

Tools Used
• Each package is itself versioned in the CVS system
• The new version of the package is downloaded on all

Control Systems using standard Unix tools (rsync
and wget commands).

• A symbolic link is then modified to point to the new
version, which is, from this moment, officially in
production.

RULE No. 3: WE DEPLOY FREQUENTLY
AND WITH STRONG SUPPORT TO OUR

USERS

Guidelines
• The life of a synchrotron facility is punctuated by

short accelerator technical shutdown periods
(generally lasting less than two weeks).

• We use these periods to install new versions of all
software packages on all control systems

• This obliges software developers to make frequent
deliveries, which helps our iterative project
management approach.

Tools and Organization
After a new version is installed, non-regression tests

are organized on each beamline with a software engineer
and a beamline scientist.

Moreover, the first day of beam delivered to the
beamlines, one engineer is physically present on the
beamline to help correcting or reporting small defects.

So called “patches” (i.e. minor corrections to the
official packages) may be redistributed to all systems,
during this first day of beam (which is not open to
external users).

Communication with Our Users
Once packages are produced, we communicate to our

users a list of the modules which have changed, with an
analysis of the level of risk associated with each change.
This risk level is determined by the software developer of
the module. Using this “risks spreadsheet”, functional and
non-regression tests can be targeted to the modules which
have the riskiest changes.

Developer 1
CVS

source code
repository

Developer1
working directory

Module 1 development:

2: Developer1 puts official tag

1: Developer1 commits source code

Developer2
working directory

Module 2 development:

2: Developer2 puts official tag

1: Developer2 commits source code

Developer 2
HUDSON checks out the

tagged version of source code of all modules

MAVEN builds the checked out
source code on compilation platforms

MAVEN assembles
modules binaries in packages

Software package
Module 1

 binary
Module 2
 binary

Figure 1: Module build and package integration.

RUN A Machine
SHUTDOWN B

Machine
SHUTDOWN A

A.1 A.2 B.1 B.2

Beam
Planning

Iterations

Release ReleaseDeployment

Development in
progress SNAPSHOTSNAPSHOT SNAPSHOT

A.3

Figure 2: Build planning.

Proceedings of ICALEPCS2009, Kobe, Japan TUP050

Project Management & System Engineering

201

Table 1: Risks Analysis Spreadsheet

Moreover, on the Monday before beam is delivered to
beamlines, software changes are presented to all beamline
and machine groups at SOLEIL’s official Operation
meeting.

Lastly, special attention is given during this shutdown
period to the new problems described in our bug tracker.

THE RESULTS

Good on-call Duty Support
Given the large scale deployment and large number of

software components, the probability that the software
engineer called on duty is an expert on the failing
software or control system is statistically low. Thanks to
our two Golden Rules, we can be confident that only
tested and official versions are deployed on production
systems. Moreover, the way our packages are organized
enables us to revert to the previous version simply by
changing a symbolic link. Lastly, as versions are the same
on all systems, we avoid different behavior from one
control system to another.

The number of software support calls from users has
decreased dramatically, vindicating our policy of
continuous integration.

 Software Quality has Improved
The great majority of software components are used on

more than one control system. This facilitates the
discovery of new bugs, and Golden Rule No. 2 ensures
that corrections are then automatically made available
throughout the institute at the next software deployment.
As an example, this mechanism has been used to put new
major versions of Tango kernel libraries (including bug
fixes and new features) into production on over 20000
devices during a single shutdown.
Last but not least, new features on a particular device or
GUI application are also available to everybody, which
avoids duplication of efforts for specifications and tests.

 Better Management of Software Integration
Risks

Our layered architecture allows us to provide our users
with a substantial number of applications providing high
level services and features for equipment controls, data
acquisition, supervision and process control. However,
integrating all layers (the majority of which are not
developed at SOLEIL) is a technical challenge. Thanks to
the continuous integration process, software compatibility
problems between layers are discovered before the
deployment phase. Once new versions are deployed, our
functional test organization allows us to discover more
subtle integration problems.

CONCLUSION
It was initially very difficult to convince accelerator

and beamline control system users that changing software
versions all the time would be beneficial for everybody in
the long term. Their natural reaction was: “Why do you
want to change the software on my beamline? I didn’t
encounter many problems during the last run, and I don’t
want to spend time retesting everything”.

We then had to justify that on call duty support would
quickly become impossible if versions were different
everywhere. Nevertheless, our strong commitment to
quickly correct and manage integration problems during
new version deployment phases has been essential in
ensuring the acceptance of continuous integration at
SOLEIL. We can even say that users have come to
appreciate the practice, which demonstrably contributes to
software quality enhancement and helps in defining
project milestones during the development phase.

Last but not least, the majority of accelerator and
beamline managers are now convinced that it is probably
the best way to manage changes and risks, in a
synchrotron world which is permanently moving and
evolving.

REFERENCES
[1] Hudson: https://hudson.dev.java.net.
[2] Maven: http://maven.apache.org.
[3] Tango: http://www.tango-controls.org.
[4] K. Saintin, V. Hardion, M. Ounsy, “How to Use a

SCADA for High-Level Application Development on
a Large-Scale Basis in a Scientific Environment”,
ICALEPS’07, Knoxville, Tennessee - USA, Oct
2007.

[5] A. Buteau, M. Ounsy, G. Abeille “A Graphical
Sequencer for SOLEIL Beamline Acquisitions”,
ICALEPS’07, Knoxville, Tennessee - USA, Oct
2007.

[6] F. Poncet , J.L. Pons, “Tango Application Toolkit”,
ICALEPS’05, Geneva, Oct 2005.

[7]
http://en.wikipedia.org/wiki/Concurrent_versions_sys
tem.

[8] http://en.wikipedia.org/wiki/Extreme_Programming.

2007 2008 2009
(estimation)

Number of calls 128 137 152
Control Systems deployed 6 12 22

Beam hours 4900 4600 6000
Tango devices 8000 15000 20000

Quality indicator
Calls*10000/(beam

hours*devices)
3,3% 2,0% 1,3%

Evolution of on-call duties

Table 2: On-call Duty Support Statistics

TUP050 Proceedings of ICALEPCS2009, Kobe, Japan

Project Management & System Engineering

202

