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Abstract 
A pulse-pattern generator produces bit patterns at user 

specified times. It can be used to control the timing of 
experimental procedures - each bit is used as a trigger line 
for external devices like a switch-able power supply. The 
development was initiated by the need of ion trap 
facilities [1]. Typically, such a facility has about three 
traps. The experimental procedure requires repeating 
many times a complex sequence of a few seconds 
duration with about 30 steps with a precision of 100 ns. 
The sequence must be synchronized to external events 
like the timing structure of an accelerator. As a solution, a 
FPGA card from National Instruments is used. The 
LabVIEW FPGA module translates the graphical code to 
VHDL, which is processed further by the tool chain of the 
FPGA manufacturer Xilinx. Presently, this solution is 
used at six different experiments at four institutes. 

INTRODUCTION 
Typical experiments in nuclear and high energy physics 

have sophisticated data acquisition systems with a large 
number of channels and event rates on the one hand. On 
the other hand, the requirements on the slow control 
system to adjust experimental parameters like high 
voltages or gas flow are fairly relaxed. For experiments 
using ion traps, like SHIPTRAP [2], HITRAP [3], 
ISOLTRAP [4] or ClusterTrap [5], the situation is 
reversed. While data acquisition is fairly simple, the use 
of single ions in vacuum requires active manipulation of 
electromagnetic fields in fast real-time. A simplified 
sketch of a part of the experimental procedure is depicted 
in Fig. 1. Shown is a sequence of steps that is called a 
cycle. First, the ions to be investigated are produced by 
nuclear reactions or, in case of stable species, might be 
obtained by using pulsed laser beams. 
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Figure 1: Simplified sketch of an experimental cycle (see text) of a typical trap experiment. The different steps must be 
synchronized with sub-microsecond precision. 
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In some cases, the ions are produced at high energies 
and must be slowed down using a gas cell [6], before they 
can be caught in a gas-filled radio-frequency quadrupole 
(RFQ) buncher. Besides being a first cooling stage, the 
prime task of such a buncher is to produce a well defined 
bunch of ions with a phase-space volume of a few eVμs. 
Such a bunch can be transferred into a preparation trap 
that serves for further cooling. Typically, a mass selective 
cooling technique, requiring damping and radio-
frequency (rf)-manipulation, is applied to isolate a few 
ions of interest from a background of unwanted species. 
The ions are transferred as a cooled bunch to the 
measurement trap. Depending on the experiment, such a 
cycle may take a few hundred ms to a few seconds. 
During an experiment, a cycle is repeated while changing 
a parameter between cycles. An example is a mass 
determination that can be performed by measuring the 
true cyclotron frequency of stored ions with ISOLTRAP 
[4]. This is accomplished by measuring an ion signal as a 
function of the frequency of a rf-field applied in the 
measurement trap, see Fig. 2. 
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Figure 2: Ion cyclotron resonance using a time-of-flight 
detection method [4]. The solid line represents a fit of the 
expected line-shape to the data points. 

The steps of a cycle might be changed frequently. 
Moreover, some of them must be synchronized with sub-
microsecond precision either consecutively or triggered 
by external signals. This is the task of a pulse-pattern 
generator that produces trigger signals for switch-able 
power supplies and rf-generators.  

REQUIREMENTS 
For typical trap experiments 64 digital outputs for 

device triggering are sufficient. Thus, the pulse-pattern 
generator should produce bit patterns with a width of 64 
bit. Each pattern is applied for a time specified by the 
experimentalist. When transferring ion bunches between 
traps, it is required to control the timing with a precision 
in the order of 10 ns. The same precision is required when 
ions need to be ejected or captured with a fixed phase 
correlation to rf-fields that have frequencies up to a few 
MHz, depending on the mass-to-charge ratio of the ions. 

Conditional execution of pattern generation must be 
possible at every moment depending on the experimental 
procedure. This is important for synchronization to 
external signals like laser-pulses or the timing structure of 
the accelerator that is involved in the ion production. Up 
to eight digital inputs are sufficient and allow up to 255 
different trigger conditions. Another feature is the 
repetition of certain steps within one cycle in a loop. As 
an example, this allows accumulating many bunches from 
the RFQ-buncher in the preparation trap prior to the 
actual preparation. Furthermore, it must be possible to 
change the time of individual patterns without re-loading 
a whole sequence of patterns. This feature allows 
measuring experimental parameters as a function of time, 
which is especially important for tuning the experimental-
setup during the preparatory phase of a beam-time. 
Precision experiments often compare a property of a 
particle to another particle that is well known. As an 
example, the mass of a radioactive nuclide is measured 
relative to the mass of 12C, the atomic mass standard. 
Different nuclides may require different timing schemes. 
Thus, it must be possible to quickly change the 
experimental procedure between cycles. This is similar to 
the fast context switching applied at the GSI accelerator 
(virtual accelerator concept). 

The pulse-pattern generator is intended for trap and 
similar experiments. These experiments are small and not 
distributed over buildings or whole sites. This has two 
consequences. First, a distributed timing system is not 
required, i.e. a single pattern generator is sufficient. 
Second, such experiments rarely have staff specialized for 
the control system only. Thus, the solution must be simple 
and should be based on hard- and software commercially 
available. 

SOLUTION PATH 
The solution presented here is based on a 

reconfigurable input/output (RIO) 7811R card from 
National Instruments. This card has a Field 
Programmable Gate Array (FPGA), embedded RAM as 
well as a PCI or a PCI eXtensions for Instrumentation 
(PXI) interface. This card can be integrated into a 
LabVIEW environment. The FPGA, a Virtex-II V1000, 
can be programmed by using the LabVIEW FPGA-
module, which creates VHDL code from the graphical 
code programmed by the developer. The VHDL code is 
then transferred to the tool chain of the FPGA 
manufacturer Xilinx, which creates a bitfile that is finally 
uploaded to the FPGA. The FPGA-module allows 
communication between normal LabVIEW programs on a 
host PC and the FPGA code during run-time. Out of 160 
digital I/O lines, 64 lines are used for pattern output. 
Eight lines are used for trigger inputs. A few additional 
output lines allow monitoring and debugging. 

FPGA 
The main idea is the following: Commands and their 

parameters are uploaded to the on-board memory of the 
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FPGA card via Direct Memory Access (DMA) transfer. 
Four different commands are implemented. 

• $time: A 64-bit pattern is applied to the output lines 
for a specified time by counting FPGA-clock-ticks. 

• $wait: A 64-bit pattern is written to the output lines. 
No further processing is done until a specified trigger 
condition is detected on the eight input lines. 

• $jump: Command used for implementing loops. 
• $stop: Last command for a sequence of patterns. This 

can be used to separate multiple sequences of 
patterns and is required for fast context switching 
(see Sect. REQUIREMENTS). 

Two different clock domains are used. Some part of the 
FPGA is clocked with a 40 MHz reference clock. 
However, the actual pattern generation is performed 
within a so-called single-cycle loop that is operated at 
80 MHz. A FIFO is required to transfer data between the 
two clock domains. When the FPGA starts execution, the 
commands are copied from the onboard memory to a 
first-in-first-out (FIFO) buffer. The FIFO is emptied by 
the single-cycle loop that does the final processing of the 
commands.  

The operation of the FPGA is controlled by a simple 
state machine supporting the following states. 

• idle: Default state, waiting for commands from the 
host PC. 

• reset: Clear onboard memory. 
• query: Query information from the onboard memory. 
• load: Load new data to the onboard memory. 
• run: Start copying of data from the onboard memory 

to the FIFO and start processing the commands in the 
single-cycle loop. 

The states reset, query, load and run can only be 
accessed from the idle state and return to the idle state 
after executing the entry, do, and exit actions of a state. 
Error conditions are handled by the idle state, which then 
transfers error messages to the host PC. 

Host PC 
Dedicated LabVIEW code that is part of the FPGA-

module allows communicating with the FPGA target from 
a host PC. Although using that code is in principle 
straight forward, implementation details are hidden by 
encapsulating the direct communication with the FPGA 
target. This is achieved by the implementation of an 
instrument driver according to the Instrument Driver 
Guidelines [7]. An instrument driver defines a well 
defined Application Programming Interface (API) that 
can be used from an application program without any 
knowledge about FPGA programming. 

STATUS 
A first version of both the FPGA and LabVIEW code 

on the host has been developed by two authors of this 
paper, F. Ziegler and S. Koszudowski. It is in production 
since about three years at six different experiments [2-
5,8,9]. The original requirements have been refined 
further as presented in this paper, and small parts of the 

code have been adapted accordingly. The code is GPL 
licensed. The solution presented here has been developed 
on the "smallest" RIO card produced by National 
Instruments. The code can easily be compiled for larger 
or faster FPGAs and is not restricted to the 7811R card. If 
required, the FPGA clock can be linked to an external 
timebase, which is available if the RIO card is used on a 
PXI platform. 

APPENDIX 
Note that the 7811R provides only TTL signals for 

output. However, some laboratory devices require higher 
currents for their trigger inputs and a TTL line-driver has 
been developed, see Fig. 3. The line-driver module is 
built as 19" crate providing up to 160 output lines. Each 
output line provides a 100 mA output current at 5 V with 
a rise-time of 15 ns. 

Figure 3: TTL line-driver module. Channels 0-31 are used 
for 32 output lines. Channel 32-39 are eight input lines 
for conditional triggering. A second module is required 
for using all 64 output lines and monitor signals. 
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