
CONFIGURATION MANAGEMENT FOR SOFTWARE AND FIRMWARE
AT PSI ACCELERATORS

T. Pal, T. Korhonen, Paul Scherrer Institute, Villigen, Switzerland

Abstract
The increased demand for usage of FPGAs in control

systems has fueled a renewed interest in configuration
management strategies for software and firmware. A
pragmatic approach is described to progressively produce
a toolkit for the management of firmware source code
over time in an environment where the platforms and
vendor toolsets change rapidly, with poor compatibility
between versions. We take advantage of recent
developments in virtualization technology, in conjunction
with command line scripts as a ‘means to an end’ for our
purpose.

INTRODUCTION
 Requirements for the maintenance of firmware and
software for embedded systems at existing scientific
facilities as well as those planned for the future have been
discussed in several articles [1-3]. The FPGA applications
are built with vendor-supplied toolsets that can have very
different behaviour and setup options between versions.
The version cycle is also very rapid and migration to a
newer toolset version can require a substantial amount of
rework. In critical applications this could even mean that
all the applications need to be verified and validated again
just because the toolset has been changed, which can
mean a significant increase in workload. In addition the
lifecycle of applications in an accelerator environment
greatly exceeds the lifecycle of typical consumer
products. While a common consensus emerges with
respect to the necessity of having a proactive approach,
there does not exist, as expected, a unique solution.
Instead, customized approaches are described, within the
software configuration management paradigm, tailored to
site-specific requirements. In the following, we present
our strategy.
 Our goal is to produce a toolkit of procedures to manage
firmware source code over time in an environment similar
to that described above. A generic approach of hardware
and software entities is described for control applications
at the PSI accelerators. Our emphasis is to reproduce
legacy implementations and perform comparisons for
project based applications within a heterogeneous
environment of vendor software development platforms,
e.g. Xilinx [4], MentorGraphics [5], and operating system
versions. Additionally, we require the ability to run
several such projects concurrently, with some degree of
automation. We have tested the feasibility of our approach
by using cost-effective, ESX virtual machine technology
from VMWare [6] to record snapshots of the various
project environments. The steering of the procedures,
themselves, is done using Expect calls [7] in Perl scripts.

FPGA TOOLS
 At the present time we are employing the design

methodology provided by tools from Xilinx. In the future
we plan to add development tools from MentorGraphics
to our suite. In this section we briefly summarize these
tools in order to motivate the scenarios to implement for
the steering process in terms of the design flow for
developing custom embedded processor systems, i.e. to
‘build’ a project.
 The Integrated Software Environment (ISE) is the
‘corner-stone’ for designing FPGA logic from Xilinx. It
consists of software development tools and utilities (e.g.
constraints entry, timing analysis, logic placement,
routing and device programming) grouped together so as
to simplify some of the inherent complexity in the design
process flow.
 The Embedded Development Kit (EDK) is a set of tools
as well as the Intellectual Property that enables one to
design a complete embedded processor system for
implementation in a (Xilinx) FPGA device. It requires the
ISE to be installed. One particular tool we mention here
from the EDK set is the Xilinx Platform Studio (XPS)
which is the development environment for designing the
hardware part of the embedded processor system.
 In fact these are GUI environments, and one of our core
requirements is to ‘capture’ the sequence of occurrences
from the button-clicks in terms of the files being created,
manipulated and processed, and to be able to execute the
same sequence from their primitives in command line
scripts. Figure 1 shows a simplified flow for an embedded
design process in the context of the tools described above.

Figure 1: Synoptic view of the Xilinx embedded process.

 The recommended design flow by Xilinx is to begin a
new project with the ISE, and then to add the embedded
processor source to this project. The XPS is used

Proceedings of ICALEPCS2009, Kobe, Japan TUP063

Reconfigurable Hardware

227

principally to develop the embedded processor hardware
system, where the configuration of the microprocessor,
peripherals and interconnects of the components as well
as their respective property assignments takes place.
Verification of the correct functionality of the hardware
platform is accomplished by means of a Hardware
Description Language (HDL) simulator in the ISE, and
also partially with the XPS.

VIRTUALIZATION
 A central requirement for the build environment is the

hardware and software infrastructure where snapshots of
the system configuration can be saved and retrieved, with
the possibility to modify the software installed as a
function of time, variants of the host operating system,
and third party software package versions, yet allowing
the possibility to rollback to a previous configuration with
a minimum of complexity and low risk. VMWare’s virtual
machine (VM) implementation is used for this purpose.

 We are using the ESXi ‘hypervisor or bear-metal’
architecture, which in contrast to the ‘hosted’ option does
not run on top of another operating system, but includes
its own kernel. The snapshot feature is a mechanism that
allows to preserve a given state of the VMs as a function
of time. A snapshot can be taken at any point in time, and
to revert back to that status, also at any point in time.

A schematic representation of the infrastructure, with
the VM’s is illustrated in Figure 2, showing the guest
virtual machines (VM_1, VM_2, VM_n) and the
administration via the Remote Client (RCLI).

Figure 2: The topology of the virtual machines, RCLI and
external infrastructure described in the text.

 The File server and disk storage are afs directory
structures. They can either be the developer’s home
directory or a common project-related directory. Version
control for the projects is done using Subversion (SVN).
Access to a Relational Database Management System
(RDBMS) is also foreseen. All of the above are available
on each of the VMs.

IMPLEMENTATION
 While there are advantages to initiate a project and
elaborate the development stages in a GUI environment,
there exists a constant risk if repeatability depends on
remembering to click menus and boxes in the correct
sequence in the user interface. In contrast, creating a
command line procedure guarantees that the same
sequence of commands are issued each time, and is,
arguably, better suited to the maintenance part of the
project lifecycle.
 As an illustrative example, Figure 3 shows the main
steps involved in our implementation, as an UML activity
diagram, which is generic in nature to the different
projects.

Figure 3: A generic UML activity diagram illustrating the
main steps involved for the project ‘build’ in the virtual
machine environment.

 The input requirements and options are UML use cases,
such as for example, the project location, Xilinx versions
and directory structures in the pre-configured SVN
repository. For steering of the procedure, from an end-
user console, Expect calls are used in Perl scripts. Expect
is ideally suited for automating procedures where periodic
input is expected from the spawned process. Several

TUP063 Proceedings of ICALEPCS2009, Kobe, Japan

Reconfigurable Hardware

228

processes can be spawned in parallel, each mapping to a
given VM, for building a specific project. The projects
themselves, can either be ‘self-contained’ in terms of
executing a Makefile, or driven by a sequence of
instructions. The keyword tags for the instructions are
contained in XML files, in analogy to the conventions
used by Xilinx. The scripts iterate through the sequence
of the tools, such as: synthesize, implement design and
generate programming file. Directories, intermediate and
final files are created in the work space of the spawned
process as required. These tasks are readily possible
thanks to the extensive and well tested Perl library
modules.

CONCLUSION
 A pragmatic approach has been presented and tested to

manage software and firmware at the PSI accelerators,
using virtualization technology in conjunction with
command line scripts. This enables us to better control
our resources across the application lifecycles, in an
environment of rapidly changing vendor toolsets and
platforms.

We believe that future requirements can be integrated
with relative ease within this framework in view of its
modular and flexible architecture.

ACKNOWLEDGMENTS
It is a pleasure to thank Rene Kapeller for his assistance

in the installation and troubleshooting of the VMWare
virtual machines infrastructure.

REFERENCES
[1] Contributions to the Topical Workshop on

Electronics for Particle Physics, TWEPP-07 (2007);
http://www.particle.cz/conference/twepp07.

[2] J. Carwardine et al., “The ILC Control System”,
ICALEPCS07, (2007);

 http://neutrons.ornl.gov/conf/icalepcs07.
[3] J. B. Lister et al., “The ITER CODAC conceptual

design”, Fusion Engineering and Design 82 (2007)
1167-1173.

[4] Xilinx, Inc.; http://www.xilinx.com.
[5] Mentor Graphics Corporation;
 http://www.mentor.com.
[6] VMWare, Inc.; http://www.vmware.com.
[7] D. Libes, “Exploring Expect”, O’Reilly &

Associates, Inc. (1995).

Proceedings of ICALEPCS2009, Kobe, Japan TUP063

Reconfigurable Hardware

229

