
EMBEDDED SOLUTIONS FOR EPICS BASED CONTROL SYSTEMS
M. Dach, G. Marinkovic, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract

Embedded systems are the next step in controls and
automation evolution. They are powerful enough to
compete, in several domains, with conventional control
solutions based, for example, on VME technology. This
paper describes the generic embedded system solutions
for EPICS based control systems. It presents the hardware
and software issues when dealing with embedded
systems. It shows a concrete example of the embedded
system based on FPGA concept which could be used as a
generic solution. Finally, usage of the EPICS general
purpose driver for memory mapped embedded devices
under VxWorks or Linux operating systems, is discussed.

INTRODUCTION
The evolution in computing and automation has a big

impact on the control systems architecture and
implementation. Most of the control systems, used in
large scale experiments and accelerators, refer to the
distributed architecture.

The distributed aspect refers to the set of self-dependent
computers (or controllers), which are linked together by
means of the communication media (i.e. bus or network)
used for the data transfer. The computers (controllers) are
equipped with software that allow for their inter-
communication.

The distributed architecture of the system reveals itself
by its decomposition to the functional parts, fulfilling
given requirements, which are spread out geographically
within a given area. The distributed computers could
either be multifunctional (e.g. VME crates) or dedicated
to specific task (e.g. network based motion controller).

The multifunctional computers are sufficiently
powerful to run several control algorithms in separate
tasks. Their functionality could be easily extended by
additional hardware modules and software packages.
However there is no free lunch and this generic approach
sometimes lacks of performance. This is the world of the
high performance , application specific controllers. This
paper presents the design and implementation issues of
such small scale controllers i.e. embedded systems [1].

EMBEDDED SYSTEMS
Typically, an embedded system is a specialized

computer system which is built on a single
microprocessor board with the program stored in FLASH.

Commercially available embedded systems are
designed to perform dedicated functions. Their hardware
implementation is based on the highly integrated
specialised ASIC chips. The functionality of the
embedded system depends on the software and hardware
implementation. Software could be relatively easy to
modify to extend the functionality of the system. The

hardware implementation is however fixed. An alternative
to the embedded system with fixed hardware architecture
could be the system with the FPGA circuit. In such cases
functionality could be extended either by software or
hardware. The flexibility of the FPGA based embedded
systems makes them highly attractive for new
developments.

EMBEDDED SYSTEMS WITH FPGA
There are several FPGA chip vendors. The most

popular are ALTERA and XILINX. These offer their
chips with FPGA structures together with soft/hard core
processors. ALTERA uses soft core Nios and XILINX
hard core PowerPC (and soft core MicroBlaze). The
PowerPC processor, from the programming point of view,
seems to be more attractive since it can operate on one of
a number of operating systems, including Linux. At PSI
(Paul Scherrer Institute) the XILINX circuit family has
been used for many years.

Figure 1 shows a schematic of the general purpose
AVNET evaluation board [2] with XILINX Virtex-4
circuit (which contains hard core PowerPC405), FLASH,
EEPROM, RAM and peripherals (UART, LAN and three
general purpose connectors). Depending on the FPGA
configuration, this board could be used for various
purposes. The FPGA is configured as a computer system
which links the hardcore PowerPC and external
components by means of the communication buses.
Custom designed (soft core) components could be added
to the FPGA in order to extend the functionality of the
board. These components can make use of the general
purpose connectors in order to interface desired type of
hardware.

Figure 1: Structure of the Avnet Virtex-4 board.

Virtex-4

PPC

RAM
32 MB

EEPROM
4 MB

FLASH
4 MB

3 AUX CONNECTORS UART LAN

Proceedings of ICALEPCS2009, Kobe, Japan TUP066

Reconfigurable Hardware

233

EEPROM memory is used to hold FPGA configuration
(bitstream), while FLASH memory is used to preserve
data and user programs; user programs are executed in
RAM. An initiative was undertaken at PSI to interface the
Avnet board to the EPICS control system. The challenge
was not only to build EPICS itself but the whole software
“back bone” which includes the boot loader, Linux OS
and the RootFS (see Appendix).

Finally the software was built and customised to fit
onto 4MB of FLASH. It was possible to achieve this
through LZMA [3] compression which is 35% more
effective than gzip and 15% better then bzip2. FLASH is
divided into the following 4 partitions:

• U-boot boot loader 256 KB
• U-boot configuration 128 KB
• Linux OS + RootFS 2.62MB

compressed with LZMA
• EPICS DB 1 MB

SYSTEM OPERATION
When the board is powered, the FPGA is configured

and the PowerPC processor starts to operate. Linux OS is
booted by means of u-boot [4]. The u-boot takes into
account configuration parameters and loads Linux either
from Flash memory or from the tftp server. The u-boot
can pass several parameters to Linux, such as the rootfs
location (i.e. initrams or nfs mounted), FLASH partitions
configuration and IP addresses etc. All u-boot
configuration parameters can be modified through a web
browser. An example of a configuration web page is
shown in Fig. 2.

Figure 2: Configuration web page.

The EPICS server runs on top of Linux. It can access
hardware components by means of the GPMM (General
Purpose Memory Mapped) driver [5]. The GPMM driver
is generic in a sense that it can be setup for any type of

board. Taking the case where the board contains an ADC
component which is visible as a set of 3 registers in
memory as shown in Fig. 3. Here, there are two GPMM
functions which setup EPICS to access the registers in the
memory: GPMMConfigure and addGPMMRegister.

Figure 3: ADC memory representation.

These functions are used in the startup script before

IocInit. The GPMMConfigure function is used to register
the card or hardware component, in the system, under a
given base address.

Example:
GPMMConfigure(0,0xB0000000,”ADC”,”A32”,”D32”)

where:
0 : card (component) number
0xB0000000 : card base address
ADC : card name
A32 : address access mode
D32 : data access mode

The addGPMMRegister function is used to associate a
user defined name with the given register.

Example:
addGPMMRegister(0,0,0x8,4,”X”,”ADC-FIFO”,0)

where:

0 : card (component) number
0 : not used
0x8 : address offset with respect to the base
ADC-FIFO : register name
0 : user defined function (0-> no function)

The GPMM driver was written originally to support

VME cards under the VxWorks kernel and was later
extended for Linux OS. In order to keep the EPICS
database portable, GPMM uses the same syntax for
VxWorks and Linux.

The example below shows how to associate the EPICS
analog input record to the ADC-FIFO register:

record(ai,”TEST:ADC-readout”){
 field(DESC,”ADC FIFO register”)
 field(DTYP,”GPMM”)
 field(INP,”#C0 S0 @ADC-FIFO”)}

where:
C0 : card (component) number
S0 : sift the readout by number of bytes
@ADC-FIFO : register name to be read out

Status and Control register
ADC offset register

ADC FIFO

0xB000000
0xB000004
0xB000008

TUP066 Proceedings of ICALEPCS2009, Kobe, Japan

Reconfigurable Hardware

234

REAL TIME CONSTRAINS
Some nodes of a distributed control system are

expected to react on time for external events. Such real
time constrains should be taken into account when
designing the distributed control system. Embedded
systems with FPGA chips are well suited to fulfill hard
real time requirements because the FPGA operation is
inherently concurrent. Therefore, time dependent parts of
the system may be implemented in the FPGA structure
with the remainder implemented by software under
Linux.

Linux as a general purpose operating system can,
nevertheless, be tuned to fulfill soft real time constrains.
Two approaches are: preemption improvement and
interrupt abstraction [6].

Preemption Improvement
In general, the strategy is to reduce the length of the

longest section of non preemptible code in order to
minimize the latency of interrupts or real-time task
scheduling in the system. The Linux kernel 2.6 onwards
can be configured as a preemptible kernel.

Interrupt Abstraction Concept
The main strategy is to make use of the RTHAL (Real

Time Hardware Abstraction Layer). The RTHAL
intercepts all hardware interrupts and routes them to
either the standard linux kernel or to the real-time task.
This approach provides a way to preserve the Linux
kernel “as is” with the additional RT-linux module (see
Fig. 4) in the RTHAL layer.

Figure 4: Linux RTAI system layout.

Interrupts which are meant for a scheduled real-time
task are sent directly to that task, while those interrupts
which are not required by any scheduled real-time task
are sent directly to the standard Linux kernel where they
are handled according to normal needs. One of the most
popular implementation of the RTHAL concept is the
RTAI (Real Time Application Interface) [7]. The RTAI
performance is very competitive with the best commercial
Real Time Operating Systems (such as VxWorks or

QNX), offering typical context switch times of 4 usec,
20 usec interrupt response, 100 KHz periodic tasks. Test
results obtained in SLS/PSI confirm RTAI performance.
Linux with RTAI extension fulfils much better real time
requirements than Linux OS with the preemption
improvement concept.

CONCLUSION
Embedded systems with FPGA circuits are very

powerful solutions which could be easily customized to
perform given tasks and extendable for future
requirements. Some modern FPGAs contain hard core
processors. They can be configured as computer systems
and run fully featured operating systems like Linux OS.
Embedded systems with FPGAs are well suited to fulfill
real-time constrains. The real time aspect of the system
could be achieved both on the hardware level and also
software wise. A generic board comprising a Xilinx
FPGA (Virtex-4 with built-in PowerPC) interfaced to the
EPICS control system, has been integrated at PSI. New
electronics is currently being developed making use of
this new approach.

APPENDIX
Generic board (used in PSI) specification:
Hardware:

• Xilinx Virtex-4 FX12 (with built-in PPC405)
• RAM 32 MB
• FLASH 4 MB
• EEPROM 4 MB
• UART, LAN, 3 general purpose sockets

Software:
• U-boot 1.2.0
• Linux 2.6.23
• Busybox 1.4.0 rootfs + goahead webserver
• EPICS 3.14.8.2

o GPMM driver with interrupt sup.
o Asyn device driver
o Stream device driver

REFERENCES
[1] Embedded systems:

http://en.wikipedia.org/wiki/Embedded_system
[2] AVNET evaluation board:
 http://www.em.avnet.com/ctf_shared/evk/df2df2usa/

Xilinx_Virtex-4_FX12_Evaluation_Kit_-
_Product_Brief.pdf

[3] LZMA compression: http://www.7-zip.org
[4] Das U-boot bootloader:

http://www.denx.de/wiki/U-Boot
[5] GPMM driver:

http://epics.web.psi.ch/software/GPMM
[6] RTLinux versus RTAI:
 http://www.linuxfordevices.com/files/misc/ripoll-rtl-

v-rtai.html
[7] DIAPM RTAI Programming Guide:

http://www.rtai.org

Linux Kernel
driver

sys. calls

Hardwar

Init Bash
Application work space

RT-linux module
scheduler

RT-task

LPT port

Kernel work space

Proceedings of ICALEPCS2009, Kobe, Japan TUP066

Reconfigurable Hardware

235

