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Abstract 

Embedded systems are the next step in controls and 
automation evolution. They are powerful enough to 
compete, in several domains, with conventional control 
solutions based, for example, on VME technology. This 
paper describes the generic embedded system solutions 
for EPICS based control systems. It presents the hardware 
and software issues when dealing with embedded 
systems. It shows a concrete example of the embedded 
system based on FPGA concept which could be used as a 
generic solution. Finally, usage of the EPICS general 
purpose driver for memory mapped embedded devices 
under VxWorks or Linux operating systems, is discussed. 

INTRODUCTION 
The evolution in computing and automation has a big 

impact on the control systems architecture and 
implementation. Most of the control systems, used in 
large scale experiments and accelerators, refer to the 
distributed architecture. 

The distributed aspect refers to the set of self-dependent 
computers (or controllers), which are linked together by 
means of the communication media (i.e. bus or network) 
used for the data transfer. The computers (controllers) are 
equipped with software that allow for their inter-
communication. 

The distributed architecture of the system reveals itself 
by its decomposition to the functional parts, fulfilling 
given requirements, which are spread out geographically 
within a given area. The distributed computers could 
either be multifunctional (e.g. VME crates) or dedicated 
to specific task (e.g. network based motion controller). 

The multifunctional computers are sufficiently 
powerful to run several control algorithms in separate 
tasks. Their functionality could be easily extended by 
additional hardware modules and software packages. 
However there is no free lunch and this generic approach 
sometimes lacks of performance. This is the world of the 
high performance , application specific controllers. This 
paper presents the design and implementation issues of 
such small scale controllers i.e. embedded systems [1].      

EMBEDDED SYSTEMS 
Typically, an embedded system is a specialized 

computer system which is built on a single 
microprocessor board with the program stored in FLASH. 

Commercially available embedded systems are 
designed to perform dedicated functions. Their hardware 
implementation is based on the highly integrated 
specialised ASIC chips. The functionality of the 
embedded system depends on the software and hardware 
implementation. Software could be relatively easy to 
modify to extend the functionality of the system. The 

hardware implementation is however fixed. An alternative 
to the embedded system with fixed hardware architecture 
could be the system with the FPGA circuit. In such cases 
functionality could be extended either by software or 
hardware. The flexibility of the FPGA based embedded 
systems makes them highly attractive for new 
developments. 

EMBEDDED SYSTEMS WITH FPGA 
There are several FPGA chip vendors. The most 

popular are ALTERA and XILINX. These offer their 
chips with FPGA structures together with soft/hard core 
processors. ALTERA uses soft core Nios and XILINX 
hard core PowerPC (and soft core MicroBlaze). The 
PowerPC processor, from the programming point of view, 
seems to be more attractive since it can operate on one of 
a number of operating systems, including Linux. At PSI 
(Paul Scherrer Institute) the XILINX circuit family has 
been used for many years. 

Figure 1 shows a schematic of the general purpose 
AVNET evaluation board [2] with XILINX Virtex-4 
circuit (which contains hard core PowerPC405), FLASH, 
EEPROM, RAM and peripherals (UART, LAN and three 
general purpose connectors). Depending on the FPGA 
configuration, this board could be used for various 
purposes. The FPGA is configured as a computer system 
which links the hardcore PowerPC and external 
components by means of the communication buses. 
Custom designed (soft core) components could be added 
to the FPGA in order to extend the functionality of the 
board. These components can make use of the general 
purpose connectors in order to interface desired type of 
hardware.  

 

Figure 1: Structure of the Avnet Virtex-4 board. 
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EEPROM memory is used to hold FPGA configuration 
(bitstream), while FLASH memory is used to preserve 
data and user programs; user programs are executed in 
RAM. An initiative was undertaken at PSI to interface the 
Avnet board to the EPICS control system.  The challenge 
was not only to build EPICS itself but the whole software 
“back bone” which includes the boot loader, Linux OS 
and the RootFS (see Appendix). 

Finally the software was built and customised to fit 
onto 4MB of FLASH. It was possible to achieve this 
through LZMA [3] compression which is 35% more 
effective than gzip and 15% better then bzip2. FLASH is 
divided into the following 4 partitions: 
 
• U-boot boot loader   256 KB 
• U-boot configuration  128 KB 
• Linux OS + RootFS  2.62MB 

compressed with LZMA 
• EPICS DB   1     MB 

SYSTEM OPERATION 
When the board is powered, the FPGA is configured 

and the PowerPC processor starts to operate. Linux OS is 
booted by means of u-boot [4]. The u-boot takes into 
account configuration parameters and loads Linux either 
from Flash memory or from the tftp server. The u-boot 
can pass several parameters to Linux, such as the rootfs 
location (i.e. initrams or nfs mounted), FLASH partitions 
configuration and IP addresses etc. All u-boot 
configuration parameters can be modified through a web 
browser. An example of a configuration web page is 
shown in Fig. 2. 

 

Figure 2: Configuration web page. 

The EPICS server runs on top of Linux. It can access 
hardware components by means of the GPMM (General 
Purpose Memory Mapped) driver [5]. The GPMM driver 
is generic in a sense that it can be setup for any type of 

board. Taking the case where the board contains an ADC 
component which is visible as a set of 3 registers in 
memory as shown in Fig. 3. Here, there are two GPMM 
functions which setup EPICS to access the registers in the 
memory: GPMMConfigure and addGPMMRegister. 

 

 

Figure 3: ADC memory representation. 

 
These functions are used in the startup script before 

IocInit. The GPMMConfigure function is used to register 
the card or hardware component, in the system, under a 
given base address.  

Example: 
GPMMConfigure(0,0xB0000000,”ADC”,”A32”,”D32”) 
 
where: 
0 : card (component) number 
0xB0000000 : card base address 
ADC  : card name 
A32  : address access mode  
D32  : data access mode 
 

The addGPMMRegister function is used to associate a 
user defined name with the given register.  
 
Example:  
addGPMMRegister(0,0,0x8,4,”X”,”ADC-FIFO”,0) 
 
where: 

0 : card (component) number 
0  : not used 
0x8  : address offset with respect to the base 
ADC-FIFO : register name 
0  : user defined function (0-> no function) 

 
The GPMM driver was written originally to support 

VME cards under the VxWorks kernel and was later 
extended for Linux OS. In order to keep the EPICS 
database portable, GPMM uses the same syntax for 
VxWorks and Linux. 

The example below shows how to associate the EPICS 
analog input record to the ADC-FIFO register: 

 
record(ai,”TEST:ADC-readout”){ 
 field(DESC,”ADC FIFO register”) 
 field(DTYP,”GPMM”) 
 field(INP,”#C0 S0 @ADC-FIFO”)} 
 
where: 
C0  : card (component) number 
S0  : sift the readout by number of bytes 
@ADC-FIFO : register name to be read out 

Status and Control register
ADC offset register 

ADC FIFO 

0xB000000 
0xB000004 
0xB000008 
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REAL TIME CONSTRAINS 
Some nodes of a distributed control system are 

expected to react on time for external events.  Such real 
time constrains should be taken into account when 
designing the distributed control system. Embedded 
systems with FPGA chips are well suited to fulfill hard 
real time requirements because the FPGA operation is 
inherently concurrent. Therefore, time dependent parts of 
the system may be implemented in the FPGA structure 
with the remainder implemented by software under 
Linux. 

Linux as a general purpose operating system can, 
nevertheless, be tuned to fulfill soft real time constrains. 
Two approaches are: preemption improvement and 
interrupt abstraction [6]. 

Preemption Improvement 
In general, the strategy is to reduce the length of the 

longest section of non preemptible code in order to 
minimize the latency of interrupts or real-time task 
scheduling in the system. The Linux kernel 2.6 onwards 
can be configured as a preemptible kernel.  

Interrupt Abstraction Concept 
The main strategy is to make use of the RTHAL (Real 

Time Hardware Abstraction Layer). The RTHAL 
intercepts all hardware interrupts and routes them to 
either the standard linux kernel or to the real-time task. 
This approach provides a way to preserve the Linux 
kernel “as is” with the additional RT-linux module (see 
Fig. 4) in the RTHAL layer.  

 

 

Figure 4: Linux RTAI system layout. 

Interrupts which are meant for a scheduled real-time 
task are sent directly to that task, while those interrupts 
which are not required by any scheduled real-time task 
are sent directly to the standard Linux kernel where they 
are handled according to normal needs. One of the most 
popular implementation of the RTHAL concept is the 
RTAI (Real Time Application Interface) [7]. The RTAI 
performance is very competitive with the best commercial 
Real Time Operating Systems (such as VxWorks or 

QNX), offering typical context switch times of 4 usec, 
20 usec interrupt response, 100 KHz periodic tasks. Test 
results obtained in SLS/PSI confirm RTAI performance. 
Linux with RTAI extension fulfils much better real time 
requirements than Linux OS with the preemption 
improvement concept. 

CONCLUSION 
Embedded systems with FPGA circuits are very 

powerful solutions which could be easily customized to 
perform given tasks and extendable for future 
requirements. Some modern FPGAs contain hard core 
processors. They can be configured as computer systems 
and run fully featured operating systems like Linux OS. 
Embedded systems with FPGAs are well suited to fulfill 
real-time constrains. The real time aspect of the system 
could be achieved both on the hardware level and also 
software wise. A generic board comprising a Xilinx 
FPGA (Virtex-4 with built-in PowerPC) interfaced to the 
EPICS control system, has been integrated at PSI. New 
electronics is currently being developed making use of 
this new approach. 

APPENDIX 
Generic board (used in PSI) specification:  
Hardware:  

• Xilinx Virtex-4 FX12 (with built-in PPC405) 
• RAM   32 MB 
• FLASH    4 MB 
• EEPROM   4 MB 
• UART, LAN, 3 general purpose sockets 

Software: 
• U-boot 1.2.0 
• Linux 2.6.23 
• Busybox 1.4.0 rootfs + goahead webserver 
• EPICS 3.14.8.2 

o GPMM driver with interrupt sup. 
o Asyn device driver 
o Stream device driver 
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