
ALMA COMMON SOFTWARE (ACS)
STATUS AND DEVELOPMENT

G. Chiozzi*, B. Jeram, A. Caproni, H. Sommer, J. Schwarz, ESO, Garching, Germany
M. Sekoranja, Cosylab, Ljubljana, Slovenia

R. Cirami, INAF-OAT, Trieste, Italy
H. Yatagai, NAOJ, Tokyo, Japan

 J. A. Avarias, NRAO, Socorro, New Mexico, U.S.A.
A. Hoffstadt, J. Lopez, UTFSM, Valparaíso, Chile

N. Troncoso, ALMA, Santiago, Chile
A. Grimstrup, University of Calgary, Calgary, Alberta, Canada

Abstract
ACS provides the infrastructure for the software of the

Atacama Large Millimeter Array and other projects[1][2].
Using CORBA middleware, ACS supports the
development of component-based software, from high-
level user interfaces down to the hardware device level. It
hides the complexity of CORBA beneath an API that
allows the application developer to focus on domain-
specific programming. Although ACS, now at release 8,
has been used operationally by the APEX radio telescope
and at the ALMA Test Facility, the commissioning of
ALMA in Chile brings major challenges: new hardware,
remote operation and, most important, up-scaling from 2
to 60+ antennas[3][6]. Work now turns to scalability and
improving the tools to simplify remote debugging. To
further identify potential problems, the University of
Eindhoven is formally analysing ACS. Meanwhile, new
developments are under way, both to respond to newly
identified needs of ALMA, and those of other projects
planning to use ACS. Examples include the refactoring of
the interface to the CORBA Notify Service, integration
with the Data Distribution Service, generation of state
machine code from abstract models and of Python
binding classes from XML schema.

ACS... IN BRIEF
ACS is a software infrastructure and framework for

the development of distributed systems based
on the Component/Container paradigm[4], built on top of
free CORBA implementations. ACS partially wraps
CORBA to hide its complexity and to make it easy to
implement applications following standardized
architecture and design patterns.

Free software is extensively used, to avoid “re-
inventing the wheel”. Commonly used libraries and tools
are integrated in ACS to ensure that a coherent and
homogeneous package is available to all developers

ACS provides the basic services needed for object
oriented distributed computing. Among these are:

• Transparent remote object invocation,
• Publisher/subscriber paradigm,

• System deployment/administration and object
location based on a container/component model,

• Distributed error and alarm handling,
• Distributed logging,
• Configuration database,
• Thread management,
• XML binding classes and transparent serialization,
• Simulation facilities,
• Standardized testing infrastructure
ACS’s primary platforms are Red-Hat Enterprise and

Scientific Linux, but it is used also on other Linux
variants. A partial implementation on Windows is in use
by other projects and work is underway to provide
complete support. Real time development is supported on
Real Time Linux (for ALMA) and VxWorks (for the
APEX project).

Development APIs are available in C++, Java and
Python. Any other language with a CORBA mapping can
be used, if needed. Coherent support of multiple
programming languages is one of the key motivations for
the implementation of ACS.

PUBLISHER/SUBSCRIBER WITH CORBA
ACS provides support for the publisher/subscriber

paradigm through the ACS Notification Channel[7].
 The current implementation is based on the CORBA

Notify Service and uses the TAO Notify Service
implementation, hiding as much as possible of the
CORBA complexity from the developers. The APIs are
available for all programming languages supported by
ACS: C++, Java and Python.

Although the present system fully satisfies all
requirements of the ALMA project, the Notify Service
has some limitations, being resource intensive and not
scaling well with the number of subscribers.

Investigating problems with the CORBA Notify
Service is often very hard and requires a lot of time.
Currently ACS is able to restart the Notify Service
processes, but this is unable to recreate the connection
topology between publishers and subscribers after the
service is restarted.

To solve this last issue, ACS has recently implemented
an extension of TAO allowing the Notify Service to store
its state persistently each time that a change in the

* gchiozzi@eso.org

Proceedings of ICALEPCS2009, Kobe, Japan TUP101

Status Report

313

topology occurs. This allows restoring its last state
(objects and connections) upon restart. We have also
implemented a circular queue to store temporally the
events that are not sent through the Notification Channel
and a Handler Callback to let a user of the NC deciding
what to do with events not correctly delivered to the
subscribers.

All these new features make a more reliable
Notification Channel, decreasing the downtime and
eliminating the need to restart all the others subsystems
after a potential NC crash.

PUBLISHER/SUBSCRIBER WITH DDS
Since the CORBA Notify is not an ideal

publisher/subscriber implementation, we have also
decided to investigate new technologies able to provide a
better solution.

The Data Distribution Service (DDS,
http://www.omgwiki.org/dds) is an OMG open
international middleware standard (as is CORBA)
directly addressing publish-subscribe communications for
real-time and embedded systems. With respect to
CORBA Notify, it offers better performance and features
decentralized message processing, scalable peer-to-peer
communication, and a wide set of QoS policies.

For ACS we have implemented a prototype of the same
ACS Notification Channel APIs with OpenDDS and used
it for evaluation in the E-ELT Demonstrator . We have
also been evaluating RTI DDS. It is possible to switch
transparently between the two implementations, so that a
comparison of performance and reliability is possible.

This implementation seems very well suited for
intensive data-centric applications where the
publisher/subscriber model allows keeping much
better de-coupling between the various components of an
application with respect to a more traditional client/server
architecture.

More details on DDS for ACS are presented in another
paper in this conference[5].

MODEL DRIVEN DEVELOPMENT
Modern control systems involve multiple subsystems

and devices. During the lifetime of the project, the design
changes and keeping models and implementation aligned
is time consuming and often neglected.

Moreover, many of the steps needed to move from
design to implementation involve a lot of repetitive code
copying activities, in particular when using a
comprehensive application framework like ACS.

A better approach is to use model-driven development
techniques, where the code is generated automatically by
a generator, based on a model. This directly reduces the
number of errors per LOC and enforces a single coding
style for a large portion of the code base.

Such an approach allows accommodating model
changes more easily and it improves productivity, since
developers can focus on business logic instead of on

implementation details. ACS is very well suited for this
approach.

The MDD system currently under development allows:
1) Code generation starting from a UML model:

a) Generate the IDL (Interface Definition) files. This
implies creating a full implementation of the
UML model as an IDL file so that it may be
compiled by IDL compilers.

b) Generate (now only in Java) fully functional base
class implementation of the applications’
components starting from a class diagram.

c) Generate the corresponding Configuration
Database and deployment information

d) Generate a basic test suite
2) Integrate design patterns into the code during the

generation process.
An advanced prototype is available and has been used

to generate simple systems.

FINITE STATE MACHINES
Control applications are in principle very naturally

mapped into state machines.
Clearly the direct control of physical devices needs to

be modeled using finite states machines, but also the high
level coordination between the subsystems of a telescope
or the sequencing of observations would be very
conveniently described using state machines.

Finally, in the last few years some generic ways of
specifying and implementing finite state machines have
become available.

In recent ACS developments we have adopted the
approach of modeling state machines with a UML tool
and generating from that the skeleton of a complete
application where only the specific code for actions and
transitions need to be implemented.

The actual state machine is generated from UML into a
general purpose state machine engine, using the
openArchitectureWare(http://www.openarchitectureware.
org/) Framework, so that this stage of generation can be
used in different application frameworks (like ACS and
VLT CCS).

An additional generation step produces all application
code needed for the specific application framework
adopted by the system.

This strategy allows generating the application for
different frameworks from the same model, allowing
better reuse of the model.

ACS DAEMONS
Until ACS 7.0, all ACS services and Containers

running on the different nodes of a distributed control
system were started by the main startup node by means of
remote secure shell sessions. The intelligence on the
deployment of the system was therefore centralized on
this main node.

As of ACS 7.0 we introduced a new strategy for
startup, deployment and system management based on
daemons deployed on the distributed nodes with the

TUP101 Proceedings of ICALEPCS2009, Kobe, Japan

Status Report

314

responsibility for monitoring and deploying services and
containers.

The central ACS manager delegates to the daemons the
task of starting and stopping containers.

The daemons can monitor resources on the nodes,
check the life status of all entities under their control,
collect statistics on CPU, disk, memory and other
resources much better than what the manager and the
other ACS administration tool were previously able to do
using plain SSH sessions.

This approach has significantly improved the reliability
of the system, its resilience to problems and the
possibility of monitoring status and diagnosing problems.

New features are being added to the daemons in the
upcoming releases, based on the feedback from the
commissioning team at the ALMA operation site.

PYTHON XML BINDING
The ALMA Science Data Model (ASDM) is a

collection of XML schema that describe format and
characteristics of the data used to define an observation.
The ALMA Observing Tool generates a set of XML files
that contain the necessary information to manage the
operations of the array and achieve the observer's science
goals.

The transformation of the information from Java's
internal representation to text-base XML is performed by
a set of bindings generated using the Castor libraries.
Using generated bindings can improves the accuracy of
the resulting XML document while reducing the
programming effort required in its generation. The
generated code will always be consistent with the schema
and it is easier to migrate old observation models to
newer versions of the schema.

While the observers benefit greatly from such
standardization, those working on telescope acceptance
and verification are not so fortunate. A large portion of
that effort, both interactive and automated, is performed
using Python scripts. Python excels as a language for test
automation, but the tools available in ACS to manipulate
ASDM files are complex to use and fail to capitalize on
the main strength of XML schema: data validation.
Having an equivalent set of XML bindings for Python
would greatly improve the test code and the efficiency of
the verification process.

The Python language has many XML parsing libraries
available, but very few binding generators. We have
evaluated two packages for inclusion into the ALMA
Common Software suite: generateDS and PyXB.
generateDS creates a SAX-based binding for a schema
while PyXB is more DOM-based. Both packages are
under active development, but currently PyXB is better
able to handle highly interrelated data models like the
ASDM. PyXB-generated bindings also have stronger
constraint-checking. Both packages are under active
development.

At present, PyXB better fits the needs of ALMA. We
are working closely with the developer to identify and

address problem areas and hope to incorporate
it into the ACS tool suite soon.

CONCLUSION
ACS development is very active at this time.
On the one hand, the core ALMA/ACS team is working

to satisfy the requests coming from the integration team at
the ALMA Operations site. This involves mainly
optimization, bug fixing, improvements in performance
and reliability. ALMA does not need “innovation” now,
but to bring the system reliably from 2 to 60+ antennas.

On the other hand, new projects starting using or
evaluating ACS request support for new technologies and
want to simplify the lifecycle of application development,
trying, for example, to obtain higher productivity through
Model Driven Development. As in any good open source
project, the community outside the core development
team takes a very active role in doing the investigations
and developing prototypes or even implementing
production quality solutions in these areas. A major role
is being played at this time by the collaborations with
UTFSM in Valparaiso and other universities.

Nevertheless, this external work is coordinated with the
core team, ensuring coherent development and avoiding
dead-ends. From past experience, we can already say that
several of these new developments will be integrated in
one of the next ACS releases and that they will bring
benefits to ALMA as well.

For more information, see also the ACS Web Page:
http://www.eso.org/projects/alma/develop/acs/.

REFERENCES
[1] G. Chiozzi et al., “The ALMA common software: a

developer friendly CORBA-based framework”, Proc.
SPIE Vol. 5496-23, Astronomical Telescopes and
Instrumentation, Glasgow, June 2004.

[2] G. Chiozzi et al., “Application development using the
ALMA Common Software”, Proc. SPIE Volume
6274, Astronomical Telescopes and Instrumentation,
Orlando, Florida, USA, May 2006.

[3] G. Raffi, B.E.Glendenning, “ALMA Software Project
Management – Lessons Learned” ICALEPCS2009,
Kobe, Japan, October 2009, these proceedings.

[4] H. Sommer, G. Chiozzi, “Container-component model
and XML in ALMA ACS”, Proc. SPIE Vol. 5496-24,
Astronomical Telescopes and Instrumentation,
Glasgow, Scotland, June 2004.

[5] J. Avarias H. Sommer G. Chiozzi, “Data Distribution
Service as an alternative to CORBA Notify Service
for the ALMA Common Software, ICALEPCS2009,
Kobe, Japan, October 2009, these proceedings.

[6] J. Schwarz et al., “The ALMA Common Software —
Dispatch from the trenches”, Proc. SPIE Vol. 7019-
32, Astronomical Telescopes and Instrumentation,
Marseille, France, June 2008

[7] D. Fugate, “ A CORBA Event System for ALMA
Common Software”, Proc. SPIE Vol. 5496-23,
Astronomical Telescopes and Instrumentation,
Glasgow, June 2004.

.

Proceedings of ICALEPCS2009, Kobe, Japan TUP101

Status Report

315

