
BRINGING THE POWER OF DYNAMIC LANGUAGES TO HARDWARE
CONTROL SYSTEMS∗

J.M. Caicedo† , R. Stoica, N. Neufeld, CERN, Geneva, Switzerland

Abstract

Hardware control systems are normally programmed us-
ing high-performance languages like C or C++ and increas-
ingly also Java. All these languages are strongly typed and
compiled which brings usually good performance but at the
cost of a longer development and testing cycle and the need
for more programming expertise.

Dynamic languages which were long thought to be too
slow or not powerful enough for control purposes are,
thanks to modern powerful computers and advanced imple-
mentation techniques, fast enough for many of these tasks.

We present examples from the LHCb Experiment Con-
trol System (ECS), which is based on a commercial
SCADA software. We have successfully used Python to
integrate hardware devices into the ECS. We present the
necessary lightweight middle-ware we have developed, in-
cluding examples for controlling hardware and software
devices. We also discuss the development cycle, tools used
and compare the effort to traditional solutions.

INTRODUCTION

Integrating new devices into hardware control systems is
frequent task that is usually quite complicated. The de-
vices support different protocols for accessing the inter-
faces; sometimes they are standard and widely available
protocols, such as SNMP or web services, but often they
provide a proprietary and specific mechanism, e.g. Telnet
access, which is more difficult to automatize.

Writing the communication layer between the device and
the control system requires experimentation and prototyp-
ing. Frequently it is necessary to actually test and debug
the program to understand completely the behavior of the
device. In our experience, this task represents the larger
fraction of the total time of the project.

Programming languages and tools contribute to make the
task easier (or harder). Traditionally, hardware control sys-
tems use high performance languages like C, C++ and Java;
with these languages, changing a small part of the code
may imply several minutes of wait before seeing the effect
of the modification. In these cases is desirable to have tools
to support a more interactive style of programming. Find-
ing a good balance between a rapid development cycle and
performance would allow us to integrate more easily new
components into hardware control systems.

∗This research project has been supported by a Marie Curie Early
Stage Research Training Fellowship of the European Community’s Sixth
and Seventh Framework Programme under contract numbers MEST-CT-
2005-020216-ELACCO.

† e-mail: juan.manuel.caicedo.carvajal@cern.ch

Furthermore, in a large control system many program-
mers contribute to the code base and they also change over
time. In particular in science, control systems tend to con-
stantly evolve so it is important to keep the applications
simple and improve the maintainability.

We describe in this paper how we have successfully
used dynamic programming languages to implement dif-
ferent parts of the ECS of the LHCb experiment at CERN
and overcome these difficulties. We present performance
benchmarks and we include a case of study of the imple-
mentation of a program for remotely controlling electric
power sockets using Python.

ECS SOFTWARE

Control Systems are used for operating, configuring, and
monitoring the devices comprised by the system. For ex-
ample, the LHCb ECS is in charge of the equipment of all
the areas of the online system, like data acquisition, exper-
iment infrastructure and controls [1].

Naturally, the devices used are heterogeneous and inte-
grating them into an uniform control system requires deal-
ing with multiple variables, such as the differences among
hardware architectures and communication protocols. In
the case of CERN, the four LHC experiments have adopted
the Joint Controls Project (JCOP), which defines an archi-
tecture for the control systems, along with a framework and
the tools for developing new components. This architecture
is based on a commercial SCADA software (PVSS II).

DYNAMIC LANGUAGES

The term dynamic languages is used frequently to de-
scribe a category of programming languages that support
interactive or exploratory programming. However, since
this term does not have a precise definition, we select the
following as the main features of the languages that allow
this type of programming style:

• Programs are interpreted and most of the verifications,
such as type checks, take place at runtime instead of
doing them before the execution, i.e. at compile time.

• Programs have access to internal information of the
runtime environment and can change it as they run
(e.g. add or modify definitions).

• Languages provide high level instructions and data
structures and simplify programs by dealing automat-
ically with complex tasks, such as memory manage-
ment.

WEA001 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

358



The main benefits of dynamic languages are easy of de-
velopment, an increase in the productivity and flexibility.
These languages provide an environment where interac-
tive programming is possible, so development cycle can
be shorter because of the ability of easily making modi-
fications and receiving immediate feedback to all the op-
erations, instead of having to wait for the edit - compile -
run cycle. This style of programming can be more efficient
because encourages incremental development and allows
the programmers to test quickly new ideas for better under-
standing the problem.

By providing higher-level instructions and data types is
possible to perform more operations using fewer lines of
code, thus speeding up the development process. Addi-
tionally, dynamic languages are well suited for integrating
systems, where is necessary to combine components of dif-
ferent applications. For example, [2] compares this type of
applications implemented in different languages and shows
how the ones that used dynamic languages were shorter and
written with less effort. Finally, with dynamic languages
programs can be more expressive and flexible because of
the possibility of modifying at runtime the type system and
the definitions or adding code during the program execu-
tion.

Python is a popular dynamic programming language that
emphasizes in the readability of the code and aims to im-
prove the efficiency of programmers by providing an easy
to learn syntax and high level control and data structures
[3]. Python mainly supports object oriented programming,
but also other paradigms: functional and imperative pro-
gramming. Its implementations include a comprehensive
standard library and they can be extended with modules
written in other languages such as C and C++.

The Python language is powerful and is already widely
used in many sectors, including scientific computing. Fur-
thermore, it has been the language of choice for many ap-
plications in the LHCb, including systems administration
and data analysis tools, so we chose to also use Python in
the LHCb control system.

PYTHON IN ECS

Python is integrated in a relative low level of the LHCb
ECS: between the devices and the SCADA system that pro-
vides the user interface where the users can view and con-
trol the device state. The communication layer is provided
by DIM [4]: a middle-ware for information publishing,
data transfer and interprocess communication. We have de-
veloped a module for using this middleware from Python
programs.

DIM – Distributed Information Management Sys-
tem

DIM provides a reliable and efficient layer for com-
munication between processes in heterogeneous environ-
ments. It is based on the client-server architecture, where

the servers provide data as the form of services and the
clients access subscribes to them. In addition to services,
DIM servers can also offer commands, which are routines
that are executed on the server when a client invokes them
supplying values as their arguments.

Clients can decide to request a service only once or at
a regular intervals, but also can receive the data whenever
they are updated by the servers. This mechanism for up-
dates allows writing client applications that respond asyn-
chronously to the data and also brings the possibility to
have multiple clients subscribed to the same service and
to receive the updates in parallel.

Another element of DIM is a name server which keeps
track of the services and commands published by the
servers. Clients ask to the name server which server pro-
vides the service they want to connect to and then they es-
tablish direct connection with it.

Reliable communication in DIM is achieved by auto-
matic recovery from errors, such as network and server
failures. In these cases, a client tries to re-establish the
connection and waits until the services are available again.

DIM is available for multiple platforms and machine ar-
chitectures. The system handles transparently the commu-
nication issues, such as differences of data representation
between platforms.

PyDIM - Integrating DIM with Python

PyDIM is an extension for accessing DIM from Python.
The extension is a wrapper around the DIM libraries for C
and it provides a simple application programming interface
(API) which is easy to learn for newcomers but also for
users with experience in developing with DIM using C.

PyDIM aims to maintain the simplicity of Python and
to keep all the features of DIM, such as reliable communi-
cations and portability. The extension deals transparently
with memory allocation and type conversions of the sent
and received data, so Python programs can keep using their
native data types. Clients and servers implemented with
PyDIM are entirely compatible with the ones implemented
with other languages. Complete documentation of PyDIM,
including code examples, is available in its website. [5]

Performance

We compare the performance of PyDIM in respect of
DIM to measure the overhead of Python and the extension
module. We performed three tests for measuring the la-
tency, memory usage and throughput of DIM clients and
servers written with Python and C/C++.

We performed the benchmarks on a single machine run-
ning the DIM client, server and name server so that we
could minimize as much as possible the effect of external
factors. The machine used was a Intel Xeon CPU server
with 8 cores, 8 GB of memory and running the SLC 4
Linux operating system.

In all the tests the performance of the Python programs
was lower. The overhead of the interpretation and the dy-

Proceedings of ICALEPCS2009, Kobe, Japan WEA001

Software Technology Evolution

359



Service size (bytes)

S
er

vi
ce

s 
re

ce
iv

ed
 (

th
ou

sa
nd

s 
pe

r 
se

co
nd

)

0

100

200

300

400

500

600

22 24 26 28 210 212 214 216

Implementation

C

PyDIM

Figure 1: Services received per second for different data
sizes

namic features of the language imply a cost in running time
and in memory usage, even if the PyDIM module is written
in C and calls directly the DIM library.

The latency was measured as the time between the mo-
ment where a client requests a service and receives the
value from the server. For Python programs the mean was
1 980 μs and 996 μs for C programs (the standard devia-
tions were 360 μs and 195 μs, respectively). This differ-
ence is due mainly to the conversion of the data received to
Python objects which is performed by the wrapper library.
As for memory, we measured the amount used only by each
process (excluding the shared memory). This test was per-
formed both for clients and servers using 25 services. The
maximum memory used by the client was 372 kB with the
C program and 2 256 kB with Python. On the other hand,
the C server used 472 kB, whereas the maximum memory
usage of the Python program was 2 416 kB.

We measure the throughput as the number of updates of a
service that a client can receive during a certain time. This
test was performed several times increasing the size of the
value published in the service in order to measure the dif-
ferences when the amount of data changes. The Python
program had a lower throughput, but the variation of the
size of the message had a similar effect in both implemen-
tations. Figure 1 shows the results of this test.

Case Study: Powersocket

We developed a simple program for integrating remote
power management devices into the LHCb ECS. These de-
vices are used for switching on and off a power outlet using
SNMP or a Telnet interface.

The program is divided in two parts: one for control-
ling the device using the interface provided by the manu-
facturer, and other for accessing and manipulating this in-
formation via DIM. The two components can run and be
tested independently, such that maintenance and debugging
of the system can be made more easily.

Using Python was an advantage, not only because it
allowed a rapid development cycle, but also because the
availability of libraries speed up the process. For example,
an early prototype used a library for automating the inter-
action using the Telnet interface of the device.

The code and the documentation of this project is avail-
able online. [6]

CONCLUSIONS

Dynamic programming languages can provide a shorter
development cycle for integrating devices into hardware
control systems. The time for writing the program can be
reduced by using interactive programming, and the result-
ing code is usually short and simple to read and maintain.
The advantage of dynamic programming language is also
recognized by other control systems. For example, EPICS
[7] and TANGO [8] provide bindings for accessing the sys-
tem API from Python programs.

PyDIM allow us to write components of a control sys-
tem using Python, so we can exploit the features of DIM:
efficient and reliable inter process communication. The use
of a uniform communication framework like DIM is neces-
sary for a heterogeneous environment like the LHCb ECS.

The performance cost that comes with the dynamic fea-
tures of the language is compensated by the powerful hard-
ware used nowadays, the new implementation techniques
or by using a mixed language approach, when the compu-
tationally intensive tasks are written in a language suited
for systems programming, like C, and then are included as
modules the can be used from the rest of the program writ-
ten in a dynamic language.

REFERENCES

[1] C. Gaspar, B.J. Franek, R. Jacobsson, B. Jost, S. Morlini, N.
Neufeld, P. Vannerem, “An integrated experiment control sys-
tem, architecture, and benefits: The LHCb approach”, IEEE
Trans. Nucl. Sci., 51:513-520, 2004

[2] J.K. Ousterhout, “Scripting: Higher-Level Programming for
the 21st Century”, Computer, 31(3):23-30, 1998

[3] Python Programming Language, http://python.org/

[4] C. Gaspar, P. Charpentier, M. Dönszelmann, “DIM, a
Portable, Light Weight Package for Information Publishing,
Data Transfer and Inter-process Communication”, Comput.
Phys. Commun., 140(1-2):102-9, 2001,
http://dim.web.cern.ch/dim/papers/chep/dim.pdf

[5] http://lbdoc.cern.ch/pydim/

[6] http://lbdoc.cern.ch/powersocket

[7] EPICS – Experimental Physics and Industrial Control Sys-
tem, http://www.aps.anl.gov/epics/

[8] TANGO Controls System,
http://www.tango-controls.org/

WEA001 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

360


